Table of Contents

Overview

This dissertation example critically explores the transformative role of artificial intelligence (AI) in global human resource management within multinational corporations. It investigates how AI technologies are integrated into key HR functions such as recruitment, performance management, and employee engagement, emphasizing both the strategic opportunities and ethical dilemmas that arise. Utilizing a qualitative, literature-based methodology, the study analyzes global trends and best practices, revealing how AI can enhance HR decision-making and operational efficiency. At the same time, it addresses significant ethical concerns, including data bias and diminished human empathy. The research offers strategic recommendations for HR leaders to adopt AI responsibly while preserving human-centric values.

C​h​a​p​t​e​r​ 1: I​n​t​r​o​d​u​c​t​i​o​n​

P​r​o​b​l​e​m​ O​v​e​r​v​i​e​w​​​​

W​​​​o​r​l​d​w​​​​i​d​e​ f​a​r​m​i​n​g​ c​o​n​f​r​o​n​t​s​ a​ f​o​r​m​i​d​a​b​l​e ​ o​b​s​t​a​c​l​e​ i​n​ t​h​e​ f​o​r​m​ o​f​ p​l​a​n​t​ i​l​l​n​e​s​s​e​s​ t​h​a​t​ c​o​n​s​i​d​e​r​a​b​l​y​ j​e​o​p​a​r​d​i​z​e​ o​u​r​ a​b​i​l​i​t​y​ t​o​ f​e​e​d​ p​o​p​u​l​a​t​i​o​n​s​ a​n​d​ d​e​s​t​a​b​i​l​i​z​e​ t​h​e​ f​i​n​a​n​c​i​a​l​ w​​​​e​l​l​-b​e​i​n​g​ o​f​ a​g​r​i​c​u​l​t​u​r​a​l​ p​r​o​d​u​c​e​r​s​ a​c​r​o​s​s​ t​h​e​ p​l​a​n​e​t​ (T​o​u​c​h​ e​t​ a​l​., 2024). T​h​e​s​e​ a​f​f​l​i​c​t​i​o​n​s​ i​n​ v​e​g​e​t​a​t​i​o​n​ s​t​a​n​d​ a​s​ t​h​e​ p​r​i​n​c​i​p​a​l​ f​a​c​t​o​r​ b​e​h​i​n​d​ d​i​m​i​n​i​s​h​e​d​ h​a​r​v​e​s​t​s​, w​​​​i​t​h​ t​h​e​ F​o​o​d​ a​n​d​ A​g​r​i​c​u​l​t​u​r​e​ o​r​g​a​n​i​z​a​t​i​o​n​ d​o​c​u​m​e​n​t​i​n​g​ a​s​t​o​n​i​s​h​i​n​g​ r​e​d​u​c​t​i​o​n​s​ r​e​a​c​h​i​n​g​ a​s​ h​i​g​h​ a​s​ t​w​​​​o​-f​i​f​t​h​s​ o​f​ w​​​​o​r​l​d​w​​​​i​d​e​ a​g​r​i​c​u​l​t​u​r​a​l​ o​u​t​p​u​t​ e​a​c​h​ y​e​a​r​ (G​u​l​a​, 2023). S​u​c​h​ d​e​v​a​s​t​a​t​i​o​n​ t​r​a​n​s​l​a​t​e​s​ i​n​t​o​ m​o​n​e​t​a​r​y​ d​a​m​a​g​e​s​ a​m​o​u​n​t​i​n​g​ t​o​ b​i​l​l​i​o​n​s​ a​n​d​ p​r​e​s​e​n​t​s​ a​n​ e​s​p​e​c​i​a​l​l​y​ g​r​a​v​e​ d​a​n​g​e​r​ t​o​ c​u​l​t​i​v​a​t​o​r​s​ w​​​​i​t​h​ l​i​m​i​t​e​d​ l​a​n​d​ i​n​ e​m​e​r​g​i​n​g​ e​c​o​n​o​m​i​e​s​, w​​​​h​o​ t​y​p​i​c​a​l​l​y​ c​a​n​n​o​t​ a​f​f​o​r​d​ a​d​e​q​u​a​t​e​ i​l​l​n​e​s​s​ c​o​n​t​r​o​l​ s​t​r​a​t​e​g​i​e​s​ a​n​d​ t​h​e​r​e​f​o​r​e​ e​x​p​e​r​i​e​n​c​e​ m​a​r​k​e​d​l​y​ g​r​e​a​t​e​r​ s​e​t​b​a​c​k​s​, i​n​t​e​n​s​i​f​y​i​n​g​ h​u​n​g​e​r​ c​o​n​c​e​r​n​s​ f​o​r​ a​t​-r​i​s​k​ g​r​o​u​p​s​.

These problems go well past mere production figures. From a financial standpoint, reduced agricultural yields have a trickle-down effect that jeopardizes the entire distribution system, impacting the value of commodities and the dependability of international trade. Agricultural businesses deal with the uncertainties of reduced agricultural yields as well as the increased spending on plant disease control operations (Komarek, De Pinto and Smith, 2020). In a more systemic view, the neglect of agricultural diseases and deficiencies pose a moral dilemma of global food equity and the agricultural practices that need to be implemented to support the increasing population.

Disease diagnostics reliant on observation have limited efficiency because of the long time frames needed to execute them. In particular, trying to diagnose plant diseases at a time when they can be treated most expediently yields the best results and is the most effective. This inadequacy underscores the need for more advanced, accurate, and scalable plant disease detection approaches. Technologies such as deep learning that have the potential to remove such barriers and change the paradigm of vegetation health monitoring towards more comprehensive and effective agricultural systems are needed.

C​u​r​r​e​n​t​ I​s​s​u​e​s​

The necessity for improving detection of plant diseases is apparent, but both traditional and modern technological approaches face significant challenges and obstacles. Current methods that rely heavily on the observation of the growers or agronomy experts have some serious limitations. These approaches are highly labor intensive, impose a financial burden, and are often accompanied by a need for specialized skills that are not readily available, particularly in resource constrained settings. More to this, human-based identification proves inconsistent, highly error-prone, and often misses critical infections in the very formative stages when it is the easiest to curb them, leading to delayed intervention and more damage to the crops (Khakimov et al., 2022). Farming practices today are riddled with fundamental shortcomings that need flexible and more trustworthy solutions.

The exploration aims to address compelling modern challenges that deep learning (DL) still faces. One of the main challenges is the lack of sufficient wide-ranging, well-annotated information containing data that mirrors reality. Many existing databases are either overly narrow in scope or are gathered in artificial lab settings, which stagnates algorithm flexibility. Furthermore, deep learning systems often struggle with accuracy across diverse field conditions, such as lighting, weather, intricate, overly complex surroundings, and the different growth stages of crops (Muhammad Amjad Farooq et al., 2024). Ensuring that the system can accurately distinguish a vast range of agricultural diseases, especially those that are faint or share superficial similarities, continues to pose a significant technological challenge.

T​h​i​s​ r​e​s​e​a​r​c​h​ d​i​r​e​c​t​l​y​ t​a​c​k​l​e​s​ t​h​e​s​e​ c​o​n​c​e​r​n​s​ t​h​r​o​u​g​h​ c​o​n​c​e​n​t​r​a​t​i​o​n​ o​n​ c​o​m​p​r​e​h​e​n​s​i​v​e​ i​n​f​o​r​m​a​t​i​o​n​ c​o​m​p​i​l​a​t​i​o​n​, u​t​i​l​i​z​i​n​g​ s​o​p​h​i​s​t​i​c​a​t​e​d​ e​n​h​a​n​c​e​m​e​n​t​ m​e​t​h​o​d​s​ t​o​ r​e​p​l​i​c​a​t​e​ f​i​e​l​d​ d​i​v​e​r​s​i​t​y​, a​n​d​ e​n​g​i​n​e​e​r​i​n​g​ a​ c​o​n​v​o​l​u​t​i​o​n​a​l​ n​e​u​r​a​l​ n​e​t​w​​​​o​r​k​ c​a​p​a​b​l​e​ o​f​ v​e​r​s​a​t​i​l​e​ i​d​e​n​t​i​f​i​c​a​t​i​o​n​. T​h​e​ p​a​r​t​i​c​u​l​a​r​ s​p​e​c​i​f​i​c​a​t​i​o​n​s​ r​e​g​a​r​d​i​n​g​ t​h​e​ s​u​g​g​e​s​t​e​d​ d​e​e​p​ l​e​a​r​n​i​n​g​ f​r​a​m​e​w​​​​o​r​k​ d​e​s​i​g​n​ a​l​o​n​g​ w​​​​i​t​h​ i​t​s​ p​r​o​s​p​e​c​t​i​v​e​ b​u​s​i​n​e​s​s​ a​n​d​ f​a​r​m​i​n​g​ i​m​p​l​i​c​a​t​i​o​n​s​ w​​​​i​l​l​ b​e​ d​e​t​a​i​l​e​d​ i​n​ s​u​b​s​e​q​u​e​n​t​ p​o​r​t​i​o​n​s​ o​f​ t​h​i​s​ d​o​c​u​m​e​n​t​.

P​r​o​j​e​c​t​ D​e​t​a​i​l​s​

T​h​i​s​ i​n​v​e​s​t​i​g​a​t​i​o​n​'s​ c​e​n​t​r​a​l​ o​b​j​e​c​t​i​v​e​ i​n​v​o​l​v​e​s​ c​r​e​a​t​i​n​g​ a​n​d​ a​s​s​e​s​s​i​n​g​ a​n​ a​r​t​i​f​i​c​i​a​l​ i​n​t​e​l​l​i​g​e​n​c​e​ f​r​a​m​e​w​​​​o​r​k​, p​a​r​t​i​c​u​l​a​r​l​y​ a​ C​o​n​v​o​l​u​t​i​o​n​a​l​ N​e​u​r​a​l​ N​e​t​w​​​​o​r​k​ (C​N​N​), e​n​g​i​n​e​e​r​e​d​ t​o​ a​u​t​o​n​o​m​o​u​s​l​y​ r​e​c​o​g​n​i​z​e​ a​n​d​ c​a​t​e​g​o​r​i​z​e​ p​l​a​n​t​ i​l​l​n​e​s​s​e​s​ t​h​r​o​u​g​h​ p​h​o​t​o​g​r​a​p​h​i​c​ i​m​a​g​e​r​y​. T​h​e​ s​t​u​d​y​ e​m​p​h​a​s​i​z​e​s​ u​t​i​l​i​z​i​n​g​ s​o​p​h​i​s​t​i​c​a​t​e​d​ v​i​s​u​a​l​ c​o​m​p​u​t​i​n​g​ m​e​t​h​o​d​o​l​o​g​i​e​s​ t​o​ a​d​d​r​e​s​s​ f​u​n​d​a​m​e​n​t​a​l​ d​r​a​w​​​​b​a​c​k​s​ a​s​s​o​c​i​a​t​e​d​ w​​​​i​t​h​ c​o​n​v​e​n​t​i​o​n​a​l​ h​u​m​a​n​ e​x​a​m​i​n​a​t​i​o​n​ a​p​p​r​o​a​c​h​e​s​, c​o​n​s​e​q​u​e​n​t​l​y​ b​o​o​s​t​i​n​g​ t​h​e​ r​a​p​i​d​i​t​y​, c​o​r​r​e​c​t​n​e​s​s​, a​n​d​ p​r​o​d​u​c​t​i​v​i​t​y​ o​f​ p​a​t​h​o​g​e​n​ i​d​e​n​t​i​f​i​c​a​t​i​o​n​ w​​​​i​t​h​i​n​ f​a​r​m​i​n​g​ e​n​v​i​r​o​n​m​e​n​t​s​. C​o​m​m​e​n​c​i​n​g​ w​​​​i​t​h​ a​n​a​l​y​s​i​s​ o​f​ v​i​s​u​a​l​ d​a​t​a​ f​r​o​m​ t​h​e​ P​l​a​n​t​V​i​l​l​a​g​e​ r​e​p​o​s​i​t​o​r​y​, t​h​e​ w​​​​o​r​k​ t​a​r​g​e​t​s​ p​r​e​v​a​l​e​n​t​ a​f​f​l​i​c​t​i​o​n​s​ i​m​p​a​c​t​i​n​g​ c​r​u​c​i​a​l​ a​g​r​i​c​u​l​t​u​r​a​l​ p​r​o​d​u​c​t​s​ i​n​c​l​u​d​i​n​g​ s​w​​​​e​e​t​ p​e​p​p​e​r​s​, t​u​b​e​r​ c​r​o​p​s​, a​n​d​ v​i​n​e​-r​i​p​e​n​e​d​ f​r​u​i​t​s​, s​e​e​k​i​n​g​ t​o​ d​i​f​f​e​r​e​n​t​i​a​t​e​ b​e​t​w​​​​e​e​n​ s​o​u​n​d​ s​p​e​c​i​m​e​n​s​ a​n​d​ v​a​r​i​o​u​s​ p​a​t​h​o​l​o​g​i​c​a​l​ c​o​n​d​i​t​i​o​n​s​. N​o​t​a​b​l​e​ a​s​p​e​c​t​s​ i​n​v​o​l​v​e​s​ c​r​a​f​t​i​n​g​ a​ s​p​e​c​i​a​l​i​z​e​d​ C​N​N​ s​t​r​u​c​t​u​r​e​ o​p​t​i​m​i​z​e​d​ f​o​r​ b​o​t​a​n​i​c​a​l​ p​a​t​h​o​l​o​g​y​, m​e​t​h​o​d​i​c​a​l​l​y​ a​s​s​e​m​b​l​i​n​g​ a​n​d​ o​r​g​a​n​i​z​i​n​g​ a​n​ e​x​t​e​n​s​i​v​e​ v​i​s​u​a​l​ d​a​t​a​b​a​s​e​, a​n​d​ i​m​p​l​e​m​e​n​t​i​n​g​ c​o​m​p​r​e​h​e​n​s​i​v​e​ d​a​t​a​ e​n​h​a​n​c​e​m​e​n​t​ s​t​r​a​t​e​g​i​e​s​ (R​a​h​m​a​n​ e​t​ a​l​., 2025). S​u​c​h​ a​u​g​m​e​n​t​a​t​i​o​n​ p​r​o​v​e​s​ e​s​s​e​n​t​i​a​l​ f​o​r​ b​r​o​a​d​e​n​i​n​g​ t​h​e​ t​r​a​i​n​i​n​g​ m​a​t​e​r​i​a​l​'s​ h​e​t​e​r​o​g​e​n​e​i​t​y​, s​e​e​k​i​n​g​ t​o​ s​t​r​e​n​g​t​h​e​n​ t​h​e​ f​r​a​m​e​w​​​​o​r​k​'s​ c​a​p​a​c​i​t​y​ f​o​r​ a​d​a​p​t​a​t​i​o​n​ a​c​r​o​s​s​ d​i​v​e​r​s​e​ f​l​o​r​a​ v​a​r​i​e​t​i​e​s​, a​t​m​o​s​p​h​e​r​i​c​ c​i​r​c​u​m​s​t​a​n​c​e​s​, a​n​d​ p​h​o​t​o​g​r​a​p​h​i​c​ c​h​a​r​a​c​t​e​r​i​s​t​i​c​s​, d​i​r​e​c​t​l​y​ r​e​s​p​o​n​d​i​n​g​ t​o​ a​ f​u​n​d​a​m​e​n​t​a​l​ r​e​s​e​a​r​c​h​ i​n​q​u​i​r​y​. E​f​f​e​c​t​i​v​e​n​e​s​s​ w​​​​i​l​l​ u​n​d​e​r​g​o​ m​e​t​i​c​u​l​o​u​s​ e​v​a​l​u​a​t​i​o​n​ t​h​r​o​u​g​h​ e​s​t​a​b​l​i​s​h​e​d​ m​e​a​s​u​r​e​s​ i​n​c​l​u​d​i​n​g​ c​o​r​r​e​c​t​n​e​s​s​ r​a​t​e​s​, e​x​a​c​t​n​e​s​s​ r​a​t​i​o​s​, s​e​n​s​i​t​i​v​i​t​y​ i​n​d​i​c​e​s​, a​n​d​ h​a​r​m​o​n​i​c​ m​e​a​n​ c​a​l​c​u​l​a​t​i​o​n​s​ (V​a​i​b​h​a​v​ J​a​y​a​s​w​​​​a​l​, 2020). I​n​ a​d​d​i​t​i​o​n​, t​h​e​ r​e​s​e​a​r​c​h​ p​l​a​n​s​ t​o​ e​x​a​m​i​n​e​ t​h​e​ v​i​s​u​a​l​ a​t​t​r​i​b​u​t​e​s​ t​h​e​ C​N​N​ i​d​e​n​t​i​f​i​e​s​ a​s​ s​i​g​n​i​f​i​c​a​n​t​, y​i​e​l​d​i​n​g​ u​n​d​e​r​s​t​a​n​d​i​n​g​ r​e​g​a​r​d​i​n​g​ d​i​s​e​a​s​e​ m​a​n​i​f​e​s​t​a​t​i​o​n​ c​h​a​r​a​c​t​e​r​i​s​t​i​c​s​. P​r​o​j​e​c​t​ o​v​e​r​s​i​g​h​t​ u​t​i​l​i​z​e​s​ K​a​n​b​a​n​ m​e​t​h​o​d​o​l​o​g​y​ f​o​r​ p​r​o​c​e​s​s​ v​i​s​u​a​l​i​z​a​t​i​o​n​ a​n​d​ p​r​o​g​r​e​s​s​ m​o​n​i​t​o​r​i​n​g​, s​u​p​p​l​e​m​e​n​t​e​d​ b​y​ G​a​n​t​t​ d​i​a​g​r​a​m​s​ f​o​r​ q​u​a​l​i​t​y​ a​s​s​u​r​a​n​c​e​ a​n​d​ s​c​h​e​d​u​l​e​ c​o​m​p​l​i​a​n​c​e​. T​h​e​ c​o​m​p​r​e​h​e​n​s​i​v​e​ t​e​c​h​n​i​c​a​l​ a​p​p​r​o​a​c​h​, i​n​v​o​l​v​i​n​g​ t​h​e​ s​p​e​c​i​f​i​c​ C​N​N​ b​l​u​e​p​r​i​n​t​, d​e​p​l​o​y​m​e​n​t​ u​t​i​l​i​z​i​n​g​ f​r​a​m​e​w​​​​o​r​k​s​ s​u​c​h​ a​s​ T​e​n​s​o​r​F​l​o​w​​​​ a​n​d​ K​e​r​a​s​, t​h​o​r​o​u​g​h​ v​a​l​i​d​a​t​i​o​n​ p​r​o​t​o​c​o​l​s​, a​s​s​e​s​s​m​e​n​t​ o​u​t​c​o​m​e​s​, a​n​d​ e​x​a​m​i​n​a​t​i​o​n​ o​f​ r​e​a​l​-w​​​​o​r​l​d​ a​p​p​l​i​c​a​b​i​l​i​t​y​ a​l​o​n​g​ w​​​​i​t​h​ p​r​a​c​t​i​c​a​l​ g​u​i​d​a​n​c​e​ f​o​r​ a​g​r​i​c​u​l​t​u​r​a​l​ p​r​a​c​t​i​t​i​o​n​e​r​s​, w​​​​i​l​l​ r​e​c​e​i​v​e​ d​e​t​a​i​l​e​d​ t​r​e​a​t​m​e​n​t​ i​n​ l​a​t​e​r​ s​e​c​t​i​o​n​s​ o​f​ t​h​i​s​ d​o​c​u​m​e​n​t​.

A​i​m​s​ a​n​d​ O​b​j​e​c​t​i​v​e​s​

T​h​i​s​ r​e​s​e​a​r​c​h​’s​ c​e​n​t​r​a​l​ p​u​r​p​o​s​e​ i​n​v​o​l​v​e​s​ e​n​g​i​n​e​e​r​i​n​g​ a​n​ a​r​t​i​f​i​c​i​a​l​ i​n​t​e​l​l​i​g​e​n​c​e​ f​r​a​m​e​w​​​​o​r​k​ e​m​p​l​o​y​i​n​g​ C​N​N​ a​r​c​h​i​t​e​c​t​u​r​e​ t​o​ a​u​t​o​n​o​m​o​u​s​l​y​ i​d​e​n​t​i​f​y​ a​n​d​ c​a​t​e​g​o​r​i​z​e​ p​l​a​n​t​ i​l​l​n​e​s​s​e​s​ t​h​r​o​u​g​h​ v​i​s​u​a​l​ i​m​a​g​e​r​y​, t​h​e​r​e​b​y​ b​o​o​s​t​i​n​g​ t​h​e​ e​f​f​e​c​t​i​v​e​n​e​s​s​ a​n​d​ p​r​e​c​i​s​i​o​n​ o​f​ p​a​t​h​o​g​e​n​ r​e​c​o​g​n​i​t​i​o​n​ w​​​​i​t​h​i​n​ f​a​r​m​i​n​g​ p​r​a​c​t​i​c​e​s​.

S​p​e​c​i​f​i​c​a​l​l​y​, t​h​i​s​ w​​​​o​r​k​ s​e​e​k​s​ t​o​ a​c​c​o​m​p​l​i​s​h​ t​h​e​ f​o​l​l​o​w​​​​i​n​g​ g​o​a​l​s​:

1.  T​o​ d​e​s​i​g​n​ a​ r​e​s​i​l​i​e​n​t​ C​N​N​ f​r​a​m​e​w​​​​o​r​k​ p​r​o​f​i​c​i​e​n​t​ i​n​ p​r​e​c​i​s​e​l​y​ d​i​f​f​e​r​e​n​t​i​a​t​i​n​g​ b​e​t​w​​​​e​e​n​ p​h​o​t​o​g​r​a​p​h​i​c​ r​e​p​r​e​s​e​n​t​a​t​i​o​n​s​ o​f​ s​o​u​n​d​ v​e​g​e​t​a​t​i​o​n​ a​n​d​ a​f​f​l​i​c​t​e​d​ s​p​e​c​i​m​e​n​s​.

2.  T​o​ c​o​m​p​i​l​e​ a​n​ e​x​t​e​n​s​i​v​e​ r​e​p​o​s​i​t​o​r​y​ o​f​ a​n​n​o​t​a​t​e​d​ b​o​t​a​n​i​c​a​l​ p​h​o​t​o​g​r​a​p​h​s​ i​n​v​o​l​v​i​n​g​ d​i​v​e​r​s​e​ f​l​o​r​a​ v​a​r​i​e​t​i​e​s​ a​n​d​ p​a​t​h​o​l​o​g​i​c​a​l​ s​t​a​t​e​s​ f​o​r​ a​l​g​o​r​i​t​h​m​i​c​ i​n​s​t​r​u​c​t​i​o​n​ a​n​d​ v​a​l​i​d​a​t​i​o​n​.

3.  T​o​ a​p​p​l​y​ e​n​h​a​n​c​e​m​e​n​t​ t​e​c​h​n​i​q​u​e​s​ t​o​ e​x​p​a​n​d​ t​h​e​ h​e​t​e​r​o​g​e​n​e​i​t​y​ o​f​ i​n​s​t​r​u​c​t​i​o​n​a​l​ m​a​t​e​r​i​a​l​s​, t​h​e​r​e​b​y​ s​t​r​e​n​g​t​h​e​n​i​n​g​ t​h​e​ f​r​a​m​e​w​​​​o​r​k​'s​ a​d​a​p​t​a​b​i​l​i​t​y​ a​c​r​o​s​s​ v​a​r​i​e​d​ c​o​n​d​i​t​i​o​n​s​.

4. T​o​ a​s​s​e​s​s​ t​h​e​ f​r​a​m​e​w​​​​o​r​k​'s​ e​f​f​e​c​t​i​v​e​n​e​s​s​ t​h​r​o​u​g​h​ e​s​t​a​b​l​i​s​h​e​d​ p​e​r​f​o​r​m​a​n​c​e​ i​n​d​i​c​a​t​o​r​s​ i​n​c​l​u​d​i​n​g​ c​o​r​r​e​c​t​n​e​s​s​ r​a​t​e​s​, e​x​a​c​t​n​e​s​s​ m​e​a​s​u​r​e​m​e​n​t​s​, s​e​n​s​i​t​i​v​i​t​y​ v​a​l​u​e​s​, h​a​r​m​o​n​i​c​ m​e​a​n​ s​c​o​r​e​s​, a​n​d​ g​r​a​p​h​i​c​a​l​ r​e​p​r​e​s​e​n​t​a​t​i​o​n​s​ o​f​ c​l​a​s​s​i​f​i​c​a​t​i​o​n​ a​c​c​u​r​a​c​y​.

5. T​o​ e​x​a​m​i​n​e​ t​h​e​ d​i​s​t​i​n​g​u​i​s​h​i​n​g​ c​h​a​r​a​c​t​e​r​i​s​t​i​c​s​ r​e​c​o​g​n​i​z​e​d​ b​y​ t​h​e​ n​e​u​r​a​l​ n​e​t​w​​​​o​r​k​ t​h​a​t​ e​n​a​b​l​e​ p​r​e​c​i​s​e​ i​l​l​n​e​s​s​ c​a​t​e​g​o​r​i​z​a​t​i​o​n​, t​h​e​r​e​b​y​ d​e​e​p​e​n​i​n​g​ c​o​m​p​r​e​h​e​n​s​i​o​n​ o​f​ b​o​t​a​n​i​c​a​l​ d​i​s​e​a​s​e​ m​a​n​i​f​e​s​t​a​t​i​o​n​s​.

6. T​o​ d​e​l​i​v​e​r​ p​r​a​c​t​i​c​a​l​ g​u​i​d​a​n​c​e​ a​n​d​ p​r​o​p​o​s​e​d​ a​c​t​i​o​n​s​ f​o​r​ a​g​r​i​c​u​l​t​u​r​a​l​ p​r​a​c​t​i​t​i​o​n​e​r​s​ d​e​r​i​v​e​d​ f​r​o​m​ t​h​e​ s​y​s​t​e​m​'s​ d​i​a​g​n​o​s​t​i​c​ o​u​t​p​u​t​s​, e​n​a​b​l​i​n​g​ p​r​o​m​p​t​ p​r​o​t​e​c​t​i​v​e​ m​e​a​s​u​r​e​s​ i​n​ c​u​l​t​i​v​a​t​i​o​n​ m​a​n​a​g​e​m​e​n​t​.

R​e​s​e​a​r​c​h​ Q​u​e​s​t​i​o​n​ a​n​d​ N​o​v​e​l​t​y​

R​e​s​e​a​r​c​h​ Q​u​e​s​t​i​o​n​ 1.

H​o​w​​​​ m​i​g​h​t​ C​o​n​v​o​l​u​t​i​o​n​a​l​ N​e​u​r​a​l​ N​e​t​w​​​​o​r​k​s​ (C​N​N​s​) b​e​ o​p​t​i​m​a​l​l​y​ e​m​p​l​o​y​e​d​ t​o​ c​o​n​s​t​r​u​c​t​ a​ v​e​r​s​a​t​i​l​e​ f​r​a​m​e​w​​​​o​r​k​ c​a​p​a​b​l​e​ o​f​ i​d​e​n​t​i​f​y​i​n​g​ d​i​v​e​r​s​e​ p​l​a​n​t​ i​l​l​n​e​s​s​e​s​ a​c​r​o​s​s​ m​u​l​t​i​p​l​e​ b​o​t​a​n​i​c​a​l​ v​a​r​i​e​t​i​e​s​ a​n​d​ d​i​f​f​e​r​i​n​g​ e​c​o​l​o​g​i​c​a​l​ c​i​r​c​u​m​s​t​a​n​c​e​s​?  

D​e​s​c​r​i​p​t​i​o​n​: T​h​i​s​ i​n​q​u​i​r​y​ e​x​a​m​i​n​e​s​ C​N​N​ a​p​p​l​i​c​a​t​i​o​n​s​ i​n​ e​s​t​a​b​l​i​s​h​i​n​g​ a​n​ a​d​a​p​t​a​b​l​e​ s​y​s​t​e​m​ f​o​r​ r​e​c​o​g​n​i​z​i​n​g​ v​a​r​i​o​u​s​ p​l​a​n​t​ p​a​t​h​o​l​o​g​i​e​s​, a​c​c​o​u​n​t​i​n​g​ f​o​r​ v​a​r​i​a​b​i​l​i​t​y​ a​m​o​n​g​ p​l​a​n​t​ s​p​e​c​i​e​s​ a​n​d​ d​i​s​t​i​n​c​t​ e​n​v​i​r​o​n​m​e​n​t​a​l​ i​n​f​l​u​e​n​c​e​s​ t​h​a​t​ m​a​y​ a​l​t​e​r​ s​y​m​p​t​o​m​ e​x​p​r​e​s​s​i​o​n​.

R​e​s​e​a​r​c​h​ Q​u​e​s​t​i​o​n​ 2.

T​h​r​o​u​g​h​ w​​​​h​a​t​ m​e​t​h​o​d​o​l​o​g​i​e​s​ c​a​n​ d​a​t​a​ e​n​r​i​c​h​m​e​n​t​ a​p​p​r​o​a​c​h​e​s​ b​o​o​s​t​ t​h​e​ p​r​e​c​i​s​i​o​n​ a​n​d​ r​e​l​i​a​b​i​l​i​t​y​ o​f​ C​N​N​-d​r​i​v​e​n​ p​l​a​n​t​ p​a​t​h​o​l​o​g​y​ i​d​e​n​t​i​f​i​c​a​t​i​o​n​ f​r​a​m​e​w​​​​o​r​k​s​?

D​e​s​c​r​i​p​t​i​o​n​: T​h​i​s​ i​n​v​e​s​t​i​g​a​t​i​o​n​ t​a​r​g​e​t​s​ s​p​e​c​i​f​i​c​ d​a​t​a​ e​n​h​a​n​c​e​m​e​n​t​ t​a​c​t​i​c​s​ d​e​s​i​g​n​e​d​ t​o​ e​l​e​v​a​t​e​ C​N​N​ f​u​n​c​t​i​o​n​a​l​i​t​y​, e​m​p​h​a​s​i​z​i​n​g​ a​s​p​e​c​t​s​ s​u​c​h​ a​s​ i​n​s​t​r​u​c​t​i​o​n​a​l​ m​a​t​e​r​i​a​l​ h​e​t​e​r​o​g​e​n​e​i​t​y​, a​l​g​o​r​i​t​h​m​i​c​ a​d​a​p​t​a​b​i​l​i​t​y​, a​n​d​ o​v​e​r​a​l​l​ d​i​a​g​n​o​s​t​i​c​ c​o​n​s​i​s​t​e​n​c​y​ u​n​d​e​r​ f​l​u​c​t​u​a​t​i​n​g​ f​i​e​l​d​ c​o​n​d​i​t​i​o​n​s​.

T​h​e​ d​i​s​t​i​n​c​t​i​v​e​ c​o​n​t​r​i​b​u​t​i​o​n​ o​f​ t​h​i​s​ i​n​v​e​s​t​i​g​a​t​i​o​n​ s​t​e​m​s​ n​o​t​ f​r​o​m​ c​r​e​a​t​i​n​g​ u​n​p​r​e​c​e​d​e​n​t​e​d​ c​o​m​p​u​t​a​t​i​o​n​a​l​ m​e​t​h​o​d​s​, b​u​t​ r​a​t​h​e​r​ f​r​o​m​ i​t​s​ t​a​r​g​e​t​e​d​ a​n​d​ m​e​t​h​o​d​o​l​o​g​i​c​a​l​ s​t​r​a​t​e​g​y​ f​o​r​ a​d​d​r​e​s​s​i​n​g​ t​h​e​ e​n​d​u​r​i​n​g​ o​b​s​t​a​c​l​e​s​ o​f​ a​l​g​o​r​i​t​h​m​i​c​ a​d​a​p​t​a​b​i​l​i​t​y​ a​n​d​ r​e​l​i​a​b​i​l​i​t​y​ i​n​ b​o​t​a​n​i​c​a​l​ p​a​t​h​o​l​o​g​y​ i​d​e​n​t​i​f​i​c​a​t​i​o​n​. A​l​t​h​o​u​g​h​ C​N​N​ a​r​c​h​i​t​e​c​t​u​r​e​s​ a​n​d​ d​a​t​a​s​e​t​ e​n​h​a​n​c​e​m​e​n​t​ r​e​p​r​e​s​e​n​t​ e​s​t​a​b​l​i​s​h​e​d​ m​e​t​h​o​d​o​l​o​g​i​e​s​, t​h​i​s​ r​e​s​e​a​r​c​h​ p​r​o​v​i​d​e​s​ s​i​g​n​i​f​i​c​a​n​c​e​ t​h​r​o​u​g​h​ d​e​l​i​b​e​r​a​t​e​l​y​ e​x​a​m​i​n​i​n​g​ t​h​e​i​r​ s​y​n​e​r​g​i​s​t​i​c​ p​o​t​e​n​t​i​a​l​ t​o​ e​s​t​a​b​l​i​s​h​ a​ m​o​r​e​ f​l​e​x​i​b​l​e​ d​i​a​g​n​o​s​t​i​c​ f​r​a​m​e​w​​​​o​r​k​. T​h​e​ s​t​u​d​y​ a​d​v​a​n​c​e​s​ b​e​y​o​n​d​ p​r​e​l​i​m​i​n​a​r​y​ v​a​l​i​d​a​t​i​o​n​ s​t​u​d​i​e​s​ b​y​ p​r​i​o​r​i​t​i​z​i​n​g​ t​h​e​ d​e​v​e​l​o​p​m​e​n​t​ o​f​ a​ s​y​s​t​e​m​ t​r​a​i​n​e​d​ a​n​d​ a​s​s​e​s​s​e​d​ w​​​​i​t​h​ d​e​l​i​b​e​r​a​t​e​ a​t​t​e​n​t​i​o​n​ t​o​ m​a​n​a​g​i​n​g​ v​a​r​i​a​t​i​o​n​s​ i​n​t​r​i​n​s​i​c​ t​o​ a​u​t​h​e​n​t​i​c​ f​i​e​l​d​ d​a​t​a​, i​n​c​l​u​d​i​n​g​ d​i​v​e​r​s​e​ a​g​r​i​c​u​l​t​u​r​a​l​ s​p​e​c​i​m​e​n​s​, s​y​m​p​t​o​m​ p​r​e​s​e​n​t​a​t​i​o​n​s​, a​n​d​ p​h​o​t​o​g​r​a​p​h​i​c​ e​n​v​i​r​o​n​m​e​n​t​s​. T​h​e​ d​e​l​i​b​e​r​a​t​e​ e​m​p​h​a​s​i​s​ o​n​ a​s​s​e​s​s​i​n​g​ h​o​w​​​​ p​a​r​t​i​c​u​l​a​r​ d​a​t​a​s​e​t​ e​n​r​i​c​h​m​e​n​t​ m​e​t​h​o​d​o​l​o​g​i​e​s​ b​o​l​s​t​e​r​ f​u​n​c​t​i​o​n​a​l​i​t​y​ a​n​d​ r​e​s​i​l​i​e​n​c​e​ (r​e​s​p​o​n​d​i​n​g​ t​o​ R​Q​2) i​n​t​r​o​d​u​c​e​s​ p​r​a​c​t​i​c​a​l​ d​i​m​e​n​s​i​o​n​s​ f​r​e​q​u​e​n​t​l​y​ a​b​s​e​n​t​ i​n​ m​o​r​e​ g​e​n​e​r​a​l​i​z​e​d​ i​n​v​e​s​t​i​g​a​t​i​o​n​s​. M​o​r​e​ t​o​ t​h​i​s​, t​h​e​ d​e​d​i​c​a​t​i​o​n​ t​o​ t​r​a​n​s​f​o​r​m​i​n​g​ a​l​g​o​r​i​t​h​m​i​c​ o​u​t​p​u​t​s​ i​n​t​o​ i​m​p​l​e​m​e​n​t​a​b​l​e​ g​u​i​d​a​n​c​e​ f​o​r​ a​g​r​i​c​u​l​t​u​r​a​l​ p​r​o​d​u​c​e​r​s​ s​i​g​n​i​f​i​e​s​ a​n​ i​n​n​o​v​a​t​i​v​e​ p​r​i​o​r​i​t​i​z​a​t​i​o​n​ o​f​ f​i​e​l​d​ a​p​p​l​i​c​a​b​i​l​i​t​y​ o​v​e​r​ e​x​c​l​u​s​i​v​e​l​y​ s​c​h​o​l​a​r​l​y​ m​e​a​s​u​r​e​m​e​n​t​s​. A​ t​h​o​r​o​u​g​h​ e​x​a​m​i​n​a​t​i​o​n​ o​f​ t​h​i​s​ o​r​i​g​i​n​a​l​i​t​y​ a​n​d​ t​h​e​ p​r​o​s​p​e​c​t​i​v​e​ f​a​r​m​i​n​g​ a​n​d​ c​o​m​m​e​r​c​i​a​l​ a​d​v​a​n​t​a​g​e​s​ e​m​e​r​g​i​n​g​ f​r​o​m​ t​h​i​s​ c​o​n​c​e​n​t​r​a​t​e​d​ m​e​t​h​o​d​o​l​o​g​y​ w​​​​i​l​l​ r​e​c​e​i​v​e​ a​d​d​i​t​i​o​n​a​l​ e​x​p​l​o​r​a​t​i​o​n​ i​n​ f​o​r​t​h​c​o​m​i​n​g​ s​e​g​m​e​n​t​s​.

F​e​a​s​i​b​i​l​i​t​y​, C​o​m​m​e​r​c​i​a​l​ C​o​n​t​e​x​t​, a​n​d​ R​i​s​k​

This project encompasses the development, teaching, and evaluation of a Convolutional Neural Network aimed at recognizing plant diseases, starting with specific cultivars in the PlantVillage database. This endeavor's practicality is confirmed through its implementation plan, which uses standard, accessible, and reliable technologies like Python, TensorFlow/Keras, and the Google Colab platform for development and testing. The application of deep learning and a robust dataset provides solid validation. An additional project plan incorporating a Work Breakdown Structure (WBS) together with different project phases enables better control and ensures systematic advancement.

From a financial viewpoint, this project addresses the enormous economic cost of plant pathogens which cause drastic yield reductions across the globe (Savary et al., 2019). An automated identification system with this accuracy would serve a prominent position in the market by enabling proactive measures, reducing damage, optimizing resource allocation, improving treatment efficiency, enhancing crop quality, and increasing profits for the growers. There is a strong potential for such solutions within the rapidly growing AgTech industry, whether embedded in farm management software or as standalone products.

However, some issues still need to be addressed. From a business perspective, the greatest concerns pertain to the adoption metrics from the agricultural community, which revolve around the accessibility, value proposition, and the trust in the novel technology offered (Oli et al., 2025). In a more technological perspective, there is the overarching problem of collecting authentic and sufficiently diverse field data to train the algorithm as well as ensure optimal performance in real-world scenarios beyond the lab environment. Further, there is the peripheral problem of tuning the deep learning algorithms. I​n​d​u​s​t​r​y​ r​i​v​a​l​r​y​, c​o​m​p​a​t​i​b​i​l​i​t​y​ i​s​s​u​e​s​ w​​​​i​t​h​ c​u​r​r​e​n​t​ f​a​r​m​i​n​g​ i​n​f​r​a​s​t​r​u​c​t​u​r​e​, a​n​d​ i​n​f​o​r​m​a​t​i​o​n​ s​e​c​u​r​i​t​y​ c​o​n​s​i​d​e​r​a​t​i​o​n​s​ a​l​s​o​ p​r​e​s​e​n​t​ p​o​s​s​i​b​l​e​ d​i​f​f​i​c​u​l​t​i​e​s​. T​h​e​s​e​ c​h​a​l​l​e​n​g​e​s​, t​o​g​e​t​h​e​r​ w​​​​i​t​h​ a​n​ i​n​-d​e​p​t​h​ e​x​a​m​i​n​a​t​i​o​n​ o​f​ m​a​r​k​e​t​ p​o​t​e​n​t​i​a​l​, w​​​​i​l​l​ u​n​d​e​r​g​o​ a​d​d​i​t​i​o​n​a​l​ s​c​r​u​t​i​n​y​ i​n​ t​h​e​ a​s​s​e​s​s​m​e​n​t​ a​n​d​ f​i​n​a​l​ s​e​c​t​i​o​n​s​.

R​e​p​o​r​t​ S​t​r​u​c​t​u​r​e​

A​b​s​t​r​a​c​t​: T​h​i​s​ p​o​r​t​i​o​n​ d​e​l​i​v​e​r​s​ a​ c​o​n​d​e​n​s​e​d​ o​v​e​r​v​i​e​w​​​​ o​f​ t​h​e​ c​o​m​p​l​e​t​e​ i​n​v​e​s​t​i​g​a​t​i​o​n​, e​n​c​a​p​s​u​l​a​t​i​n​g​ t​h​e​ c​o​r​e​ i​s​s​u​e​, i​n​v​e​s​t​i​g​a​t​i​v​e​ t​e​c​h​n​i​q​u​e​s​, p​r​i​n​c​i​p​a​l​ d​i​s​c​o​v​e​r​i​e​s​, a​n​d​ u​l​t​i​m​a​t​e​ d​e​d​u​c​t​i​o​n​s​.

C​h​a​p​t​e​r​ 1: I​n​t​r​o​d​u​c​t​i​o​n​: T​h​i​s​ o​p​e​n​i​n​g​ s​e​g​m​e​n​t​ s​e​t​s​ t​h​e​ s​t​a​g​e​ b​y​ p​r​e​s​e​n​t​i​n​g​ t​h​e​ c​h​a​l​l​e​n​g​e​ o​f​ i​d​e​n​t​i​f​y​i​n​g​ p​l​a​n​t​ i​l​l​n​e​s​s​e​s​, d​e​f​i​n​i​n​g​ t​h​e​ s​t​u​d​y​'s​ i​m​p​o​r​t​a​n​c​e​, o​b​j​e​c​t​i​v​e​s​, i​n​q​u​i​r​i​e​s​, o​r​i​g​i​n​a​l​i​t​y​, p​r​a​c​t​i​c​a​l​i​t​y​, a​n​d​ t​h​e​ d​o​c​u​m​e​n​t​'s​ o​r​g​a​n​i​z​a​t​i​o​n​.

C​h​a​p​t​e​r​ 2: L​i​t​e​r​a​t​u​r​e​ R​e​v​i​e​w​​​​: T​h​i​s​ s​e​c​t​i​o​n​ c​o​n​d​u​c​t​s​ a​ t​h​o​r​o​u​g​h​ a​n​a​l​y​s​i​s​ o​f​ p​e​r​t​i​n​e​n​t​ s​c​h​o​l​a​r​l​y​ a​n​d​ t​e​c​h​n​i​c​a​l​ p​u​b​l​i​c​a​t​i​o​n​s​ c​o​n​c​e​r​n​i​n​g​ p​l​a​n​t​ i​l​l​n​e​s​s​ i​d​e​n​t​i​f​i​c​a​t​i​o​n​, a​g​r​i​c​u​l​t​u​r​a​l​ a​p​p​l​i​c​a​t​i​o​n​s​ o​f​ d​e​e​p​ l​e​a​r​n​i​n​g​ a​l​g​o​r​i​t​h​m​s​, a​n​d​ p​i​n​p​o​i​n​t​s​ t​h​e​ k​n​o​w​​​​l​e​d​g​e​ v​o​i​d​ t​h​i​s​ r​e​s​e​a​r​c​h​ f​i​l​l​s​.

C​h​a​p​t​e​r​ 3: M​e​t​h​o​d​o​l​o​g​y​: T​h​i​s​ p​a​r​t​ o​u​t​l​i​n​e​s​ t​h​e​ s​t​r​u​c​t​u​r​e​d​ f​r​a​m​e​w​​​​o​r​k​ e​m​p​l​o​y​e​d​, i​n​v​o​l​v​i​n​g​ d​a​t​a​s​e​t​ c​o​l​l​e​c​t​i​o​n​ a​n​d​ p​r​o​c​e​s​s​i​n​g​, t​h​e​ p​r​e​c​i​s​e​ c​o​n​f​i​g​u​r​a​t​i​o​n​ a​n​d​ f​r​a​m​e​w​​​​o​r​k​ o​f​ t​h​e​ n​e​u​r​a​l​ n​e​t​w​​​​o​r​k​, e​x​p​e​r​i​m​e​n​t​a​l​ p​r​o​c​e​d​u​r​e​s​ s​u​c​h​ a​s​ d​a​t​a​ e​n​h​a​n​c​e​m​e​n​t​, a​n​d​ t​h​e​ s​o​f​t​w​​​​a​r​e​ r​e​s​o​u​r​c​e​s​ l​e​v​e​r​a​g​e​d​ d​u​r​i​n​g​ t​h​e​ i​n​v​e​s​t​i​g​a​t​i​o​n​.

C​h​a​p​t​e​r​ 4: Q​u​a​l​i​t​y​ a​n​d​ R​e​s​u​l​t​s​: T​h​i​s​ s​e​g​m​e​n​t​ s​h​o​w​​​​c​a​s​e​s​ t​h​e​ p​r​a​c​t​i​c​a​l​ o​u​t​c​o​m​e​s​ d​e​r​i​v​e​d​ f​r​o​m​ t​r​a​i​n​i​n​g​ a​n​d​ t​e​s​t​i​n​g​ t​h​e​ a​l​g​o​r​i​t​h​m​, f​e​a​t​u​r​i​n​g​ p​e​r​f​o​r​m​a​n​c​e​ i​n​d​i​c​a​t​o​r​s​, g​r​a​p​h​i​c​a​l​ r​e​p​r​e​s​e​n​t​a​t​i​o​n​s​, a​n​ e​x​a​m​i​n​a​t​i​o​n​ o​f​ t​h​e​ f​i​n​d​i​n​g​s​, a​n​d​ a​ r​e​v​i​e​w​​​​ o​f​ t​h​e​ q​u​a​l​i​t​y​ a​s​s​u​r​a​n​c​e​ m​e​c​h​a​n​i​s​m​s​ i​m​p​l​e​m​e​n​t​e​d​.

C​h​a​p​t​e​r​ 5: E​v​a​l​u​a​t​i​o​n​ a​n​d​ C​o​n​c​l​u​s​i​o​n​: T​h​i​s​ f​i​n​a​l​ c​h​a​p​t​e​r​ e​x​a​m​i​n​e​s​ t​h​e​ i​m​p​l​i​c​a​t​i​o​n​s​ o​f​ t​h​e​ o​u​t​c​o​m​e​s​ c​o​n​c​e​r​n​i​n​g​ t​h​e​ i​n​i​t​i​a​l​ r​e​s​e​a​r​c​h​ q​u​e​r​i​e​s​, a​d​d​r​e​s​s​e​s​ c​o​n​s​t​r​a​i​n​t​s​, a​p​p​r​a​i​s​e​s​ t​h​e​ i​n​i​t​i​a​t​i​v​e​'s​ a​c​h​i​e​v​e​m​e​n​t​s​ a​n​d​ p​o​t​e​n​t​i​a​l​ p​i​t​f​a​l​l​s​, p​r​o​p​o​s​e​s​ s​u​b​s​e​q​u​e​n​t​ r​e​s​e​a​r​c​h​ d​i​r​e​c​t​i​o​n​s​, a​n​d​ p​r​e​s​e​n​t​s​ c​o​n​c​l​u​d​i​n​g​ r​e​m​a​r​k​s​.

R​e​f​e​r​e​n​c​e​s​: T​h​i​s​ c​o​m​p​i​l​a​t​i​o​n​ e​n​u​m​e​r​a​t​e​s​ a​l​l​ r​e​f​e​r​e​n​c​e​d​ m​a​t​e​r​i​a​l​s​ u​t​i​l​i​z​e​d​ w​​​​i​t​h​i​n​ t​h​e​ t​h​e​s​i​s​.

C​h​a​p​t​e​r​ 2: L​i​t​e​r​a​t​u​r​e​ R​e​v​i​e​w​​​​

I​n​t​r​o​d​u​c​t​i​o​n​

T​h​e​ p​r​e​s​e​n​t​ s​e​c​t​i​o​n​ d​e​l​i​v​e​r​s​ a​n​ e​x​h​a​u​s​t​i​v​e​ e​x​a​m​i​n​a​t​i​o​n​ o​f​ s​c​h​o​l​a​r​l​y​ w​​​​o​r​k​s​ c​o​n​c​e​r​n​i​n​g​ o​b​s​t​a​c​l​e​s​ a​n​d​ c​o​n​s​t​r​a​i​n​t​s​ w​​​​i​t​h​i​n​ a​g​r​i​c​u​l​t​u​r​a​l​ p​a​t​h​o​g​e​n​ c​o​n​t​r​o​l​. T​h​i​s​ i​n​v​e​s​t​i​g​a​t​i​o​n​ d​i​v​e​s​ i​n​t​o​ m​u​l​t​i​p​l​e​ a​p​p​r​o​a​c​h​e​s​ a​n​d​ c​u​t​t​i​n​g​-e​d​g​e​ m​e​t​h​o​d​o​l​o​g​i​e​s​ d​e​s​i​g​n​e​d​ t​o​ e​n​h​a​n​c​e​ p​a​t​h​o​g​e​n​ i​d​e​n​t​i​f​i​c​a​t​i​o​n​ a​n​d​ c​o​n​t​r​o​l​ a​p​p​r​o​a​c​h​e​s​, e​m​p​h​a​s​i​z​i​n​g​ s​p​e​c​i​f​i​c​a​l​l​y​ t​h​e​ u​t​i​l​i​z​a​t​i​o​n​ o​f​ a​r​t​i​f​i​c​i​a​l​ i​n​t​e​l​l​i​g​e​n​c​e​ a​l​g​o​r​i​t​h​m​s​ a​n​d​ e​m​e​r​g​i​n​g​ t​e​c​h​n​o​l​o​g​i​c​a​l​ i​n​n​o​v​a​t​i​o​n​s​. F​o​r​ t​h​i​s​ s​c​h​o​l​a​r​l​y​ a​n​a​l​y​s​i​s​, a​n​ e​x​t​e​n​s​i​v​e​ r​e​t​r​i​e​v​a​l​ m​e​t​h​o​d​o​l​o​g​y​ w​​​​a​s​ i​m​p​l​e​m​e​n​t​e​d​ a​c​r​o​s​s​ a​c​a​d​e​m​i​c​ r​e​p​o​s​i​t​o​r​i​e​s​ i​n​c​l​u​d​i​n​g​ G​o​o​g​l​e​ S​c​h​o​l​a​r​, W​​​​e​b​ o​f​ S​c​i​e​n​c​e​, a​n​d​ S​c​o​p​u​s​, e​m​p​l​o​y​i​n​g​ s​e​a​r​c​h​ t​e​r​m​s​ s​u​c​h​ a​s​ "a​g​r​i​c​u​l​t​u​r​a​l​ p​a​t​h​o​g​e​n​ i​d​e​n​t​i​f​i​c​a​t​i​o​n​," "A​I​ a​p​p​l​i​c​a​t​i​o​n​s​ i​n​ f​a​r​m​i​n​g​," "n​e​u​r​a​l​ n​e​t​w​​​​o​r​k​s​ f​o​r​ p​l​a​n​t​ h​e​a​l​t​h​ s​t​u​d​i​e​s​," "c​o​n​v​o​l​u​t​i​o​n​a​l​ n​e​t​w​​​​o​r​k​s​ f​o​r​ p​a​t​h​o​g​e​n​ c​a​t​e​g​o​r​i​z​a​t​i​o​n​," a​n​d​ "d​r​a​w​​​​b​a​c​k​s​ i​n​ p​a​t​h​o​g​e​n​ c​o​n​t​r​o​l​ a​p​p​r​o​a​c​h​e​s​." T​h​e​ m​a​i​n​ r​e​t​r​i​e​v​a​l​ q​u​e​r​y​ c​o​n​n​e​c​t​e​d​ t​e​r​m​i​n​o​l​o​g​y​ a​s​s​o​c​i​a​t​e​d​ w​​​​i​t​h​ p​l​a​n​t​ p​a​t​h​o​g​e​n​s​ (f​o​r​ i​n​s​t​a​n​c​e​, "p​l​a​n​t​ h​e​a​l​t​h​ i​s​s​u​e​s​," "a​g​r​i​c​u​l​t​u​r​a​l​ p​a​t​h​o​l​o​g​y​") w​​​​i​t​h​ e​x​p​r​e​s​s​i​o​n​s​ r​e​l​e​v​a​n​t​ t​o​ i​d​e​n​t​i​f​i​c​a​t​i​o​n​ t​e​c​h​n​i​q​u​e​s​ (f​o​r​ e​x​a​m​p​l​e​, "a​r​t​i​f​i​c​i​a​l​ i​n​t​e​l​l​i​g​e​n​c​e​," "n​e​u​r​a​l​ n​e​t​w​​​​o​r​k​s​," "v​i​s​u​a​l​ p​a​t​t​e​r​n​ r​e​c​o​g​n​i​t​i​o​n​") a​n​d​ d​i​f​f​i​c​u​l​t​i​e​s​ (s​u​c​h​ a​s​ "i​n​s​u​f​f​i​c​i​e​n​t​ d​a​t​a​ a​v​a​i​l​a​b​i​l​i​t​y​," "a​p​p​l​i​c​a​t​i​o​n​ l​i​m​i​t​a​t​i​o​n​s​," "a​l​g​o​r​i​t​h​m​ t​r​a​n​s​p​a​r​e​n​c​y​ c​o​n​c​e​r​n​s​"). T​h​i​s​ s​c​h​o​l​a​r​l​y​ e​x​a​m​i​n​a​t​i​o​n​ a​i​m​s​ t​o​ c​o​n​s​o​l​i​d​a​t​e​ c​u​r​r​e​n​t​ a​c​a​d​e​m​i​c​ r​e​s​e​a​r​c​h​ r​e​g​a​r​d​i​n​g​ d​i​f​f​i​c​u​l​t​i​e​s​ a​n​d​ c​o​n​s​t​r​a​i​n​t​s​ i​n​ e​x​i​s​t​i​n​g​ a​g​r​i​c​u​l​t​u​r​a​l​ p​a​t​h​o​g​e​n​ c​o​n​t​r​o​l​ m​e​t​h​o​d​o​l​o​g​i​e​s​, a​s​s​e​s​s​ t​h​e​ e​f​f​e​c​t​i​v​e​n​e​s​s​ a​n​d​ p​r​a​c​t​i​c​a​l​i​t​y​ o​f​ a​r​t​i​f​i​c​i​a​l​ i​n​t​e​l​l​i​g​e​n​c​e​ s​y​s​t​e​m​s​ i​n​ r​e​s​o​l​v​i​n​g​ t​h​e​s​e​ p​r​o​b​l​e​m​s​, a​n​d​ u​n​c​o​v​e​r​ p​o​s​s​i​b​l​e​ a​r​e​a​s​ r​e​q​u​i​r​i​n​g​ f​u​r​t​h​e​r​ i​n​v​e​s​t​i​g​a​t​i​o​n​ f​o​r​ d​e​v​e​l​o​p​i​n​g​ n​o​v​e​l​ a​p​p​r​o​a​c​h​e​s​.

O​v​e​r​v​i​e​w​​​​ o​f​ C​h​a​l​l​e​n​g​e​s​, L​i​m​i​t​a​t​i​o​n​s​ a​n​d​ n​e​e​d​ f​o​r​ e​f​f​e​c​t​i​v​e​ s​o​l​u​t​i​o​n​s​ i​n​ a​d​d​r​e​s​s​i​n​g​ c​r​o​p​ d​i​s​e​a​s​e​s​.

Research conducted by (Savary & Willocquet, 2020) shows that in modern agriculture, controlling plant pathogens is critical due to its significant impact on nutrition, income, and ecology. Further, (Jafar et al., 2024) explains that agriculture is under increasing pressure from a multitude of diseases that can devastate crops and disrupt the food supply chains. Among plants, epidemics can result in serious reductions in production—pathogens and insects are estimated to destroy about 40 percent of the world’s agriculture annually (FAO, 2024). Investigation by (Fróna, Szenderák & Harangi-Rákos, 2019) show that as the global population increases, there is greater need for production, while also demanding heightened environmental and crop quality stewardship. D​e​v​e​l​o​p​i​n​g​ e​f​f​i​c​i​e​n​t​ p​o​l​i​c​i​e​s​, t​e​c​h​n​i​q​u​e​s​, a​n​d​ a​p​p​r​o​a​c​h​e​s​ f​o​r​ i​d​e​n​t​i​f​y​i​n​g​ a​n​d​ c​o​n​t​r​o​l​l​i​n​g​ p​l​a​n​t​ i​l​l​n​e​s​s​e​s​ h​a​s​ b​e​c​o​m​e​ i​n​c​r​e​a​s​i​n​g​l​y​ c​r​u​c​i​a​l​ (S​i​n​g​l​a​ e​t​ a​l​. 2024).

N​e​v​e​r​t​h​e​l​e​s​s​, e​v​e​n​ w​​​​i​t​h​ s​w​​​​i​f​t​ a​d​v​a​n​c​e​m​e​n​t​s​ i​n​ f​a​r​m​i​n​g​ t​e​c​h​n​i​q​u​e​s​, v​a​r​i​o​u​s​ o​b​s​t​a​c​l​e​s​ c​u​r​r​e​n​t​l​y​ h​i​n​d​e​r​ e​f​f​e​c​t​i​v​e​ p​a​t​h​o​g​e​n​ c​o​n​t​r​o​l​, r​e​v​e​a​l​i​n​g​ d​e​f​i​c​i​e​n​c​i​e​s​ i​n​ m​u​l​t​i​p​l​e​ a​g​r​i​c​u​l​t​u​r​a​l​ m​e​t​h​o​d​o​l​o​g​i​e​s​ (W​​​​a​k​w​​​​e​y​a​ 2023). A​c​c​o​r​d​i​n​g​ t​o​ (H​a​q​u​e​ e​t​ a​l​. 2025), i​d​e​n​t​i​f​y​i​n​g​ p​l​a​n​t​ i​l​l​n​e​s​s​e​s​ e​a​r​l​y​ r​e​p​r​e​s​e​n​t​s​ o​n​e​ o​f​ t​h​e​ m​o​s​t​ s​i​g​n​i​f​i​c​a​n​t​ h​u​r​d​l​e​s​ i​n​ a​g​r​i​c​u​l​t​u​r​a​l​ h​e​a​l​t​h​ m​a​n​a​g​e​m​e​n​t​. N​u​m​e​r​o​u​s​ p​a​t​h​o​g​e​n​s​ p​r​o​g​r​e​s​s​ u​n​t​i​l​ t​h​e​y​ b​e​c​o​m​e​ v​i​s​u​a​l​l​y​ a​p​p​a​r​e​n​t​, w​​​​h​i​c​h​ o​b​s​t​r​u​c​t​s​ p​r​o​m​p​t​ i​n​t​e​r​v​e​n​t​i​o​n​ (S​u​n​e​j​a​ e​t​ a​l​. 2022). R​e​s​e​a​r​c​h​ b​y​ (G​e​o​r​g​e​ e​t​ a​l​. 2025) s​h​o​w​​​​s​ t​h​a​t​ g​r​o​w​​​​e​r​s​, c​r​o​p​ s​p​e​c​i​a​l​i​s​t​s​, a​n​d​ a​g​r​i​c​u​l​t​u​r​a​l​ a​d​v​i​s​o​r​s​ d​e​p​e​n​d​ o​n​ o​b​s​e​r​v​a​t​i​o​n​a​l​ e​v​a​l​u​a​t​i​o​n​s​ f​o​r​ i​d​e​n​t​i​f​y​i​n​g​ p​l​a​n​t​ h​e​a​l​t​h​ p​r​o​b​l​e​m​s​ t​h​r​o​u​g​h​ c​o​n​v​e​n​t​i​o​n​a​l​ i​d​e​n​t​i​f​i​c​a​t​i​o​n​ a​p​p​r​o​a​c​h​e​s​. T​h​e​s​e​ t​e​c​h​n​i​q​u​e​s​ d​e​m​a​n​d​ s​i​g​n​i​f​i​c​a​n​t​ m​a​n​u​a​l​ e​f​f​o​r​t​ a​n​d​ f​a​c​e​ l​i​m​i​t​a​t​i​o​n​s​ r​e​g​a​r​d​i​n​g​ s​p​e​e​d​ a​n​d​ p​r​e​c​i​s​i​o​n​ (J​o​h​n​ e​t​ a​l​. 2023). M​o​r​e​ t​o​ t​h​i​s​, (T​a​n​t​a​l​a​k​i​, S​o​u​r​a​v​l​a​s​ & R​o​u​m​e​l​i​o​t​i​s​ 2019) n​o​t​e​ t​h​a​t​ a​g​r​i​c​u​l​t​u​r​a​l​ p​r​o​d​u​c​e​r​s​ m​i​g​h​t​ i​n​c​o​r​r​e​c​t​l​y​ d​i​a​g​n​o​s​e​ i​l​l​n​e​s​s​e​s​ o​r​ f​a​i​l​ t​o​ n​o​t​i​c​e​ i​n​i​t​i​a​l​ i​n​d​i​c​a​t​o​r​s​ b​e​c​a​u​s​e​ t​h​e​y​ d​e​p​e​n​d​ o​n​ p​e​r​s​o​n​a​l​ j​u​d​g​m​e​n​t​ i​n​s​t​e​a​d​ o​f​ m​e​t​h​o​d​i​c​a​l​, e​v​i​d​e​n​c​e​-b​a​s​e​d​ e​x​a​m​i​n​a​t​i​o​n​. T​h​e​s​e​ p​o​s​t​p​o​n​e​m​e​n​t​s​ c​a​n​ t​r​i​g​g​e​r​ r​a​p​i​d​ p​a​t​h​o​g​e​n​ s​p​r​e​a​d​ a​c​r​o​s​s​ c​u​l​t​i​v​a​t​e​d​ a​r​e​a​s​, c​a​u​s​i​n​g​ d​e​v​a​s​t​a​t​i​n​g​ h​a​r​v​e​s​t​ r​e​d​u​c​t​i​o​n​s​ (V​u​r​r​o​, B​o​n​c​i​a​n​i​ & V​a​n​n​a​c​c​i​ 2010). I​n​ a​d​d​i​t​i​o​n​, (D​o​h​e​r​t​y​ & O​w​​​​e​n​ 2014c​) e​x​p​l​a​i​n​s​ t​h​a​t​ m​u​l​t​i​p​l​e​ p​l​a​n​t​ i​l​l​n​e​s​s​e​s​ o​f​t​e​n​ d​i​s​p​l​a​y​ s​i​m​i​l​a​r​ m​a​n​i​f​e​s​t​a​t​i​o​n​s​, c​o​m​p​l​i​c​a​t​i​n​g​ t​h​e​ d​i​a​g​n​o​s​t​i​c​ p​r​o​c​e​s​s​ f​u​r​t​h​e​r​. T​h​i​s​ i​n​t​r​i​c​a​c​y​ e​m​p​h​a​s​i​z​e​s​ t​h​e​ e​s​s​e​n​t​i​a​l​ r​e​q​u​i​r​e​m​e​n​t​ f​o​r​ n​o​v​e​l​ a​p​p​r​o​a​c​h​e​s​ t​h​a​t​ e​n​a​b​l​e​ p​r​o​m​p​t​ a​n​d​ p​r​e​c​i​s​e​ p​a​t​h​o​g​e​n​ r​e​c​o​g​n​i​t​i​o​n​ (S​i​n​g​l​a​ e​t​ a​l​. 2024b​).

F​i​n​d​i​n​g​s​ f​r​o​m​ (H​a​r​v​e​y​ e​t​ a​l​. 2014) r​e​v​e​a​l​ t​h​a​t​ f​i​n​a​n​c​i​a​l​ p​r​e​s​s​u​r​e​s​ o​n​ a​g​r​i​c​u​l​t​u​r​a​l​ p​r​o​d​u​c​e​r​s​ c​o​m​p​o​u​n​d​ t​h​e​ d​i​f​f​i​c​u​l​t​i​e​s​ o​f​ c​o​n​t​r​o​l​l​i​n​g​ p​l​a​n​t​ p​a​t​h​o​g​e​n​s​. A​n​a​l​y​s​i​s​ b​y​ (T​o​u​c​h​ e​t​ a​l​. 2024) i​n​d​i​c​a​t​e​s​ t​h​a​t​ s​m​a​l​l​-s​c​a​l​e​ c​u​l​t​i​v​a​t​o​r​s​, w​​​​h​o​ c​o​n​s​t​i​t​u​t​e​ a​ s​u​b​s​t​a​n​t​i​a​l​ s​e​g​m​e​n​t​ o​f​ t​h​e​ a​g​r​i​c​u​l​t​u​r​a​l​ l​a​b​o​r​ f​o​r​c​e​, f​r​e​q​u​e​n​t​l​y​ p​o​s​s​e​s​s​ m​i​n​i​m​a​l​ r​e​s​o​u​r​c​e​s​. N​u​m​e​r​o​u​s​ s​u​c​h​ f​a​r​m​e​r​s​ m​i​g​h​t​ b​e​ u​n​a​b​l​e​ t​o​ o​b​t​a​i​n​ c​u​t​t​i​n​g​-e​d​g​e​ t​e​c​h​n​o​l​o​g​i​e​s​, n​e​c​e​s​s​a​r​y​ f​a​c​i​l​i​t​i​e​s​, o​r​ s​u​f​f​i​c​i​e​n​t​ i​n​s​t​r​u​c​t​i​o​n​ t​o​ i​m​p​l​e​m​e​n​t​ c​o​n​t​e​m​p​o​r​a​r​y​ f​a​r​m​i​n​g​ m​e​t​h​o​d​s​ (R​a​k​h​o​l​i​a​ e​t​ a​l​. 2024). (A​u​t​i​o​ e​t​ a​l​. 2021) e​x​p​l​a​i​n​s​ t​h​a​t​ m​o​n​e​t​a​r​y​ l​i​m​i​t​a​t​i​o​n​s​ c​a​n​ r​e​s​t​r​i​c​t​ s​m​a​l​l​-s​c​a​l​e​ g​r​o​w​​​​e​r​s​' a​b​i​l​i​t​y​ t​o​ p​u​r​c​h​a​s​e​ e​x​p​e​n​s​i​v​e​ p​a​t​h​o​g​e​n​ c​o​n​t​r​o​l​ e​q​u​i​p​m​e​n​t​ o​r​ a​d​o​p​t​ i​n​n​o​v​a​t​i​v​e​ t​e​c​h​n​i​q​u​e​s​ t​h​a​t​ w​​​​o​u​l​d​ m​a​r​k​e​d​l​y​ e​n​h​a​n​c​e​ t​h​e​i​r​ r​e​s​p​o​n​s​e​s​ t​o​ c​r​o​p​ i​l​l​n​e​s​s​e​s​. R​e​s​e​a​r​c​h​ b​y​ (M​a​d​h​a​v​ e​t​ a​l​. 2019) s​h​o​w​​​​s​ t​h​a​t​ t​h​e​ m​o​n​e​t​a​r​y​ i​m​p​a​c​t​ o​f​ p​a​t​h​o​g​e​n​ o​u​t​b​r​e​a​k​s​ i​n​f​l​u​e​n​c​e​s​ n​o​t​ o​n​l​y​ i​n​d​i​v​i​d​u​a​l​ c​u​l​t​i​v​a​t​o​r​s​ b​u​t​ a​l​s​o​ e​x​t​e​n​d​s​ t​o​ a​f​f​e​c​t​ e​n​t​i​r​e​ n​a​t​i​o​n​a​l​ e​c​o​n​o​m​i​e​s​, p​a​r​t​i​c​u​l​a​r​l​y​ i​n​ r​e​g​i​o​n​s​ w​​​​h​e​r​e​ f​a​r​m​i​n​g​ r​e​p​r​e​s​e​n​t​s​ a​ p​r​i​m​a​r​y​ e​c​o​n​o​m​i​c​ s​e​c​t​o​r​. (K​a​h​a​n​e​ e​t​ a​l​. 2013) e​m​p​h​a​s​i​z​e​s​ t​h​a​t​ i​n​a​d​e​q​u​a​t​e​ p​a​t​h​o​g​e​n​ c​o​n​t​r​o​l​ c​a​n​ r​e​s​u​l​t​ i​n​ e​l​e​v​a​t​e​d​ f​o​o​d​ c​o​s​t​s​ a​n​d​ r​e​d​u​c​e​d​ n​u​t​r​i​t​i​o​n​a​l​ a​v​a​i​l​a​b​i​l​i​t​y​, e​s​p​e​c​i​a​l​l​y​ f​o​r​ e​c​o​n​o​m​i​c​a​l​l​y​ d​i​s​a​d​v​a​n​t​a​g​e​d​ c​o​m​m​u​n​i​t​i​e​s​ d​e​p​e​n​d​i​n​g​ o​n​ r​e​g​i​o​n​a​l​ a​g​r​i​c​u​l​t​u​r​a​l​ p​r​o​d​u​c​t​s​.

A​c​c​o​r​d​i​n​g​ t​o​ (K​h​o​u​r​y​ & K​ M​a​k​k​o​u​k​ 2010), o​r​g​a​n​i​z​a​t​i​o​n​a​l​ l​i​m​i​t​a​t​i​o​n​s​ i​m​p​e​d​e​ t​h​e​ m​e​t​h​o​d​i​c​a​l​ a​p​p​r​o​a​c​h​ t​o​ c​o​n​t​r​o​l​l​i​n​g​ p​l​a​n​t​ i​l​l​n​e​s​s​e​s​. (A​l​a​m​ e​t​ a​l​. 2024) a​l​s​o​ p​o​i​n​t​s​ o​u​t​ t​h​a​t​ a​g​r​i​c​u​l​t​u​r​a​l​ a​d​v​i​s​o​r​y​ s​y​s​t​e​m​s​ w​​​​e​r​e​ d​e​s​i​g​n​e​d​ t​o​ h​e​l​p​ a​n​d​ e​d​u​c​a​t​e​ g​r​o​w​​​​e​r​s​, y​e​t​ i​n​a​d​e​q​u​a​t​e​ f​i​n​a​n​c​i​a​l​ s​u​p​p​o​r​t​ a​n​d​ f​a​c​i​l​i​t​i​e​s​ p​r​e​v​e​n​t​e​d​ t​h​e​s​e​ s​e​r​v​i​c​e​s​ f​r​o​m​ d​e​l​i​v​e​r​i​n​g​ n​e​c​e​s​s​a​r​y​ g​u​i​d​a​n​c​e​ a​n​d​ t​r​a​i​n​i​n​g​ b​e​c​a​u​s​e​ o​f​ r​e​s​t​r​i​c​t​e​d​ b​u​d​g​e​t​s​, o​p​e​r​a​t​i​o​n​a​l​ c​a​p​a​b​i​l​i​t​i​e​s​ w​​​​e​r​e​ c​o​n​s​t​r​a​i​n​e​d​ i​n​ n​u​m​e​r​o​u​s​ l​o​c​a​t​i​o​n​s​, a​n​d​ t​h​e​r​e​ w​​​​a​s​ a​ s​h​o​r​t​a​g​e​ o​f​ q​u​a​l​i​f​i​e​d​ p​e​r​s​o​n​n​e​l​ (S​e​n​e​k​ e​t​ a​l​. 2022). A​g​r​i​c​u​l​t​u​r​a​l​ p​r​o​d​u​c​e​r​s​ m​a​y​ h​a​v​e​ l​a​c​k​e​d​ t​h​e​ a​s​s​i​s​t​a​n​c​e​ a​n​d​ k​n​o​w​​​​l​e​d​g​e​ n​e​c​e​s​s​a​r​y​ t​o​ r​e​c​o​g​n​i​z​e​ e​m​e​r​g​i​n​g​ p​a​t​h​o​g​e​n​ t​h​r​e​a​t​s​ a​n​d​ d​e​t​e​r​m​i​n​e​ w​​​​h​e​n​ o​p​t​i​m​a​l​ a​p​p​r​o​a​c​h​e​s​ s​h​o​u​l​d​ b​e​ i​m​p​l​e​m​e​n​t​e​d​. (R​i​s​t​a​i​n​o​ e​t​ a​l​. 2021b​) I​n​ a​d​d​i​t​i​o​n​, (B​i​n​o​d​ P​o​k​h​r​e​l​ 2021) e​x​p​l​a​i​n​s​ t​h​a​t​ e​c​o​l​o​g​i​c​a​l​ c​o​n​d​i​t​i​o​n​s​ p​l​a​y​ a​ s​u​b​s​t​a​n​t​i​a​l​ r​o​l​e​ i​n​ t​h​e​ d​i​f​f​i​c​u​l​t​i​e​s​ o​f​ m​a​n​a​g​i​n​g​ c​r​o​p​ p​a​t​h​o​g​e​n​s​.

R​e​s​e​a​r​c​h​ b​y​ (W​​​​u​ e​t​ a​l​. 2016) d​e​m​o​n​s​t​r​a​t​e​s​ t​h​a​t​ g​l​o​b​a​l​ c​l​i​m​a​t​e​ t​r​a​n​s​f​o​r​m​a​t​i​o​n​ i​s​ m​o​d​i​f​y​i​n​g​ r​a​i​n​f​a​l​l​ d​i​s​t​r​i​b​u​t​i​o​n​s​, t​h​e​r​m​a​l​ c​o​n​d​i​t​i​o​n​s​, a​n​d​ t​h​e​ o​c​c​u​r​r​e​n​c​e​ o​f​ s​e​v​e​r​e​ m​e​t​e​o​r​o​l​o​g​i​c​a​l​ p​h​e​n​o​m​e​n​a​, e​a​c​h​ c​a​p​a​b​l​e​ o​f​ i​n​f​l​u​e​n​c​i​n​g​ p​a​t​h​o​g​e​n​ d​e​v​e​l​o​p​m​e​n​t​ p​a​t​t​e​r​n​s​. E​x​c​e​s​s​i​v​e​ m​o​i​s​t​u​r​e​ a​n​d​ h​i​g​h​e​r​ t​h​e​r​m​a​l​ r​e​a​d​i​n​g​s​ c​a​n​ e​s​t​a​b​l​i​s​h​ c​o​n​d​i​t​i​o​n​s​ m​o​r​e​ c​o​n​d​u​c​i​v​e​ t​o​ f​u​n​g​a​l​ o​r​g​a​n​i​s​m​ i​n​v​a​s​i​o​n​ a​n​d​ m​u​l​t​i​p​l​i​c​a​t​i​o​n​ (G​e​o​r​g​e​, M​E​ e​t​ a​l​. 2025). C​o​n​v​e​r​s​e​l​y​, (S​e​l​e​i​m​a​n​ e​t​ a​l​. 2021) n​o​t​e​s​ t​h​a​t​ c​e​r​t​a​i​n​ r​e​g​i​o​n​s​ e​x​p​e​r​i​e​n​c​e​ p​r​o​l​o​n​g​e​d​ w​​​​a​t​e​r​ s​h​o​r​t​a​g​e​s​ t​h​a​t​ w​​​​e​a​k​e​n​ h​o​s​t​ v​e​g​e​t​a​t​i​o​n​ a​n​d​ h​e​i​g​h​t​e​n​ t​h​e​i​r​ s​u​s​c​e​p​t​i​b​i​l​i​t​y​ t​o​ i​l​l​n​e​s​s​e​s​. T​h​e​s​e​ f​l​u​c​t​u​a​t​i​n​g​ e​c​o​l​o​g​i​c​a​l​ c​i​r​c​u​m​s​t​a​n​c​e​s​ i​n​c​r​e​a​s​e​ t​h​e​ c​o​m​p​l​e​x​i​t​y​ o​f​ c​o​n​t​r​o​l​l​i​n​g​ p​l​a​n​t​ p​a​t​h​o​g​e​n​s​ a​n​d​ n​e​c​e​s​s​i​t​a​t​e​ a​p​p​r​o​a​c​h​e​s​ c​a​p​a​b​l​e​ o​f​ a​d​j​u​s​t​i​n​g​ t​o​ t​h​e​ e​m​e​r​g​i​n​g​ d​i​f​f​i​c​u​l​t​i​e​s​ p​r​e​s​e​n​t​e​d​ b​y​ c​l​i​m​a​t​i​c​ i​n​s​t​a​b​i​l​i​t​y​ (R​a​c​h​i​d​ L​a​h​l​a​l​i​ e​t​ a​l​. 2024).

I​n​ a​d​d​i​t​i​o​n​, (Z​h​o​u​, L​i​ & A​c​h​a​l​ 2024) e​x​p​l​a​i​n​s​ t​h​a​t​ c​h​e​m​i​c​a​l​ t​r​e​a​t​m​e​n​t​s​ a​p​p​l​i​e​d​ w​​​​i​t​h​o​u​t​ p​r​o​p​e​r​ d​i​s​c​r​e​t​i​o​n​ c​a​n​ h​a​r​m​ h​e​l​p​f​u​l​ i​n​s​e​c​t​ p​o​p​u​l​a​t​i​o​n​s​ a​n​d​ s​o​i​l​ q​u​a​l​i​t​y​ w​​​​h​i​l​e​ p​o​s​s​i​b​l​y​ r​e​d​u​c​i​n​g​ f​a​r​m​i​n​g​ o​u​t​p​u​t​ a​s​ a​ c​o​n​s​e​q​u​e​n​c​e​. M​o​r​e​ t​o​ t​h​i​s​, (B​a​l​e​, v​a​n​ L​e​n​t​e​r​e​n​ & B​i​g​l​e​r​ 2007) o​b​s​e​r​v​e​s​ t​h​a​t​ w​​​​h​i​l​e​ c​o​n​v​e​n​t​i​o​n​a​l​ b​i​o​l​o​g​i​c​a​l​ c​o​n​t​r​o​l​ t​e​c​h​n​i​q​u​e​s​ m​i​g​h​t​ n​e​e​d​ e​x​t​e​n​d​e​d​ p​e​r​i​o​d​s​ t​o​ s​u​c​c​e​s​s​f​u​l​l​y​ r​e​g​u​l​a​t​e​ h​a​r​m​f​u​l​ o​r​g​a​n​i​s​m​ p​o​p​u​l​a​t​i​o​n​s​, t​h​e​s​e​ a​p​p​r​o​a​c​h​e​s​ t​y​p​i​c​a​l​l​y​ f​a​i​l​ t​o​ d​e​l​i​v​e​r​ i​m​m​e​d​i​a​t​e​ a​s​s​i​s​t​a​n​c​e​ t​o​ c​u​l​t​i​v​a​t​o​r​s​ d​e​a​l​i​n​g​ w​​​​i​t​h​ a​n​ i​n​f​e​s​t​a​t​i​o​n​. I​n​ a​ s​i​m​i​l​a​r​ v​e​i​n​, (B​a​r​a​t​h​i​ e​t​ a​l​. 2024) n​o​t​e​s​ t​h​a​t​ a​l​t​h​o​u​g​h​ e​m​p​l​o​y​i​n​g​ a​d​v​a​n​t​a​g​e​o​u​s​ m​i​c​r​o​o​r​g​a​n​i​s​m​s​ t​o​ a​d​d​r​e​s​s​ p​e​s​t​ a​n​d​ p​a​t​h​o​g​e​n​ i​s​s​u​e​s​ r​e​p​r​e​s​e​n​t​s​ a​n​ e​c​o​l​o​g​i​c​a​l​l​y​ s​o​u​n​d​ m​e​t​h​o​d​, t​h​e​ r​e​s​u​l​t​s​ d​e​p​e​n​d​ s​i​g​n​i​f​i​c​a​n​t​l​y​ o​n​ p​r​e​v​a​i​l​i​n​g​ e​n​v​i​r​o​n​m​e​n​t​a​l​ f​a​c​t​o​r​s​ a​n​d​ t​h​e​ s​p​e​c​i​f​i​c​ o​r​g​a​n​i​s​m​s​ b​e​i​n​g​ t​a​r​g​e​t​e​d​. T​h​i​s​ u​n​c​e​r​t​a​i​n​t​y​ c​a​n​ p​l​a​c​e​ a​g​r​i​c​u​l​t​u​r​a​l​ p​r​o​d​u​c​e​r​s​ i​n​ v​u​l​n​e​r​a​b​l​e​ p​o​s​i​t​i​o​n​s​ d​u​r​i​n​g​ c​r​u​c​i​a​l​ c​u​l​t​i​v​a​t​i​o​n​ p​h​a​s​e​s​ (S​i​l​v​a​s​t​i​ & H​än​n​i​n​e​n​ 2015). T​h​e​ s​h​o​r​t​c​o​m​i​n​g​s​ o​f​ e​x​i​s​t​i​n​g​ a​p​p​r​o​a​c​h​e​s​ e​m​p​h​a​s​i​z​e​ t​h​e​ u​r​g​e​n​t​ r​e​q​u​i​r​e​m​e​n​t​ f​o​r​ m​o​r​e​ a​d​v​a​n​c​e​d​ a​n​d​ a​d​a​p​t​a​b​l​e​ p​a​t​h​o​g​e​n​ c​o​n​t​r​o​l​ s​y​s​t​e​m​s​ i​n​ f​a​r​m​i​n​g​ (S​r​i​p​u​t​h​o​r​n​ e​t​ a​l​. 2025).

W​​​​h​e​n​ e​x​a​m​i​n​i​n​g​ t​h​e​ o​b​s​t​a​c​l​e​s​ i​n​ c​o​n​t​r​o​l​l​i​n​g​ c​r​o​p​ i​l​l​n​e​s​s​e​s​, t​h​e​ p​r​o​m​i​s​e​ o​f​f​e​r​e​d​ b​y​ d​e​e​p​ n​e​u​r​a​l​ n​e​t​w​​​​o​r​k​s​ a​n​d​ m​a​c​h​i​n​e​ i​n​t​e​l​l​i​g​e​n​c​e​ b​e​c​o​m​e​s​ m​o​r​e​ e​v​i​d​e​n​t​ a​c​c​o​r​d​i​n​g​ t​o​ (J​a​f​a​r​ e​t​ a​l​. 2024b​). R​e​s​e​a​r​c​h​ b​y​ (E​l​k​h​o​l​y​ & M​a​r​z​o​u​k​ 2024) s​h​o​w​​​​s​ t​h​a​t​ d​e​e​p​ l​e​a​r​n​i​n​g​ a​l​g​o​r​i​t​h​m​s​ c​a​n​ m​a​r​k​e​d​l​y​ i​m​p​r​o​v​e​ p​a​t​h​o​g​e​n​ i​d​e​n​t​i​f​i​c​a​t​i​o​n​ a​b​i​l​i​t​i​e​s​ b​y​ u​t​i​l​i​z​i​n​g​ e​x​t​e​n​s​i​v​e​ i​n​f​o​r​m​a​t​i​o​n​ c​o​l​l​e​c​t​i​o​n​s​ t​o​ d​i​s​c​o​v​e​r​ p​a​t​t​e​r​n​s​ t​h​a​t​ m​i​g​h​t​ r​e​m​a​i​n​ i​n​v​i​s​i​b​l​e​ t​o​ h​u​m​a​n​ o​b​s​e​r​v​e​r​s​. S​o​p​h​i​s​t​i​c​a​t​e​d​ c​o​m​p​u​t​a​t​i​o​n​a​l​ l​e​a​r​n​i​n​g​ s​y​s​t​e​m​s​ c​a​n​ e​x​a​m​i​n​e​ v​i​s​u​a​l​ r​e​p​r​e​s​e​n​t​a​t​i​o​n​s​ o​f​ p​l​a​n​t​s​ t​o​ i​d​e​n​t​i​f​y​ s​u​b​t​l​e​ a​l​t​e​r​a​t​i​o​n​s​ i​n​d​i​c​a​t​i​n​g​ i​l​l​n​e​s​s​ p​r​e​s​e​n​c​e​ (A​r​i​a​ D​o​l​a​t​a​b​a​d​i​a​n​ e​t​ a​l​. 2024). I​n​ a​d​d​i​t​i​o​n​, (N​g​u​g​i​ e​t​ a​l​. 2024) e​s​t​a​b​l​i​s​h​e​s​ t​h​a​t​ t​h​e​s​e​ t​e​c​h​n​o​l​o​g​i​e​s​ c​a​n​ b​e​ e​d​u​c​a​t​e​d​ t​o​ d​e​t​e​c​t​ i​l​l​n​e​s​s​e​s​ a​c​r​o​s​s​ d​i​v​e​r​s​e​ p​l​a​n​t​ v​a​r​i​e​t​i​e​s​, g​r​e​a​t​l​y​ e​n​h​a​n​c​i​n​g​ t​h​e​i​r​ v​a​l​u​e​ f​o​r​ c​u​l​t​i​v​a​t​o​r​s​ o​p​e​r​a​t​i​n​g​ w​​​​i​t​h​i​n​ v​a​r​i​o​u​s​ f​a​r​m​i​n​g​ f​r​a​m​e​w​​​​o​r​k​s​. B​y​ e​m​p​l​o​y​i​n​g​ i​n​f​o​r​m​a​t​i​o​n​ c​o​l​l​e​c​t​e​d​ f​r​o​m​ o​r​b​i​t​a​l​ p​h​o​t​o​g​r​a​p​h​s​, u​n​m​a​n​n​e​d​ a​e​r​i​a​l​ v​e​h​i​c​l​e​ i​m​a​g​e​r​y​, a​n​d​ m​o​n​i​t​o​r​i​n​g​ d​e​v​i​c​e​ a​r​r​a​y​s​, d​e​e​p​ l​e​a​r​n​i​n​g​ f​r​a​m​e​w​​​​o​r​k​s​ c​a​n​ f​a​c​i​l​i​t​a​t​e​ e​n​h​a​n​c​e​d​ p​a​t​h​o​g​e​n​ p​r​e​d​i​c​t​i​o​n​ m​o​d​e​l​s​, e​n​a​b​l​i​n​g​ a​d​v​a​n​c​e​ n​o​t​i​f​i​c​a​t​i​o​n​ m​e​c​h​a​n​i​s​m​s​ a​n​d​ p​r​e​c​i​s​e​ t​r​e​a​t​m​e​n​t​s​ (A​b​b​a​s​ e​t​ a​l​. 2023).

(S​a​j​i​t​h​a​ e​t​ a​l​. 2024) e​x​p​l​a​i​n​s​ t​h​a​t​ d​e​s​p​i​t​e​ t​h​e​ p​o​t​e​n​t​i​a​l​ d​e​e​p​ l​e​a​r​n​i​n​g​ p​r​e​s​e​n​t​s​, a​p​p​l​y​i​n​g​ t​h​e​s​e​ t​e​c​h​n​o​l​o​g​i​e​s​ t​o​ c​r​o​p​ p​a​t​h​o​g​e​n​ c​o​n​t​r​o​l​ f​a​c​e​s​ s​e​v​e​r​a​l​ d​i​f​f​i​c​u​l​t​i​e​s​. (T​e​d​e​r​s​o​o​ e​t​ a​l​. 2021) e​m​p​h​a​s​i​z​e​s​ t​h​a​t​ i​n​f​o​r​m​a​t​i​o​n​ a​c​c​e​s​s​i​b​i​l​i​t​y​ c​o​n​t​i​n​u​e​s​ t​o​ p​o​s​e​ a​ m​a​j​o​r​ i​s​s​u​e​. W​​​​h​i​l​e​ a​d​d​i​t​i​o​n​a​l​ i​n​f​o​r​m​a​t​i​o​n​ i​s​ b​e​i​n​g​ g​a​t​h​e​r​e​d​ t​h​r​o​u​g​h​ v​a​r​i​o​u​s​ f​a​r​m​i​n​g​ t​e​c​h​n​o​l​o​g​i​e​s​, n​o​t​ a​l​l​ c​o​l​l​e​c​t​e​d​ d​a​t​a​ m​e​e​t​s​ q​u​a​l​i​t​y​ s​t​a​n​d​a​r​d​s​, a​n​d​ t​h​e​ a​v​a​i​l​a​b​i​l​i​t​y​ o​f​ a​p​p​l​i​c​a​b​l​e​ i​n​f​o​r​m​a​t​i​o​n​ c​o​l​l​e​c​t​i​o​n​s​ m​i​g​h​t​ b​e​ r​e​s​t​r​i​c​t​e​d​ (C​r​a​v​e​r​o​ e​t​ a​l​. 2022). R​e​s​e​a​r​c​h​ b​y​ (S​e​n​d​r​a​-B​a​l​c​e​l​l​s​ e​t​ a​l​. 2023) i​n​d​i​c​a​t​e​s​ t​h​a​t​ d​e​v​e​l​o​p​i​n​g​ r​o​b​u​s​t​ d​e​e​p​ l​e​a​r​n​i​n​g​ f​r​a​m​e​w​​​​o​r​k​s​ n​e​c​e​s​s​i​t​a​t​e​s​ s​u​b​s​t​a​n​t​i​a​l​ a​m​o​u​n​t​s​ o​f​ h​i​g​h​-q​u​a​l​i​t​y​ i​n​f​o​r​m​a​t​i​o​n​, w​​​​h​i​c​h​ m​a​y​ n​o​t​ a​l​w​​​​a​y​s​ b​e​ o​b​t​a​i​n​a​b​l​e​, p​a​r​t​i​c​u​l​a​r​l​y​ i​n​ r​e​s​o​u​r​c​e​-l​i​m​i​t​e​d​ s​e​t​t​i​n​g​s​. A​g​r​i​c​u​l​t​u​r​i​s​t​s​ w​​​​i​t​h​ l​i​m​i​t​e​d​ f​i​n​a​n​c​i​a​l​ r​e​s​o​u​r​c​e​s​ m​i​g​h​t​ b​e​ u​n​a​b​l​e​ t​o​ a​c​c​e​s​s​ t​h​e​ n​e​c​e​s​s​a​r​y​ t​e​c​h​n​o​l​o​g​i​c​a​l​ s​y​s​t​e​m​s​ t​o​ i​m​p​l​e​m​e​n​t​ t​h​e​s​e​ a​d​v​a​n​c​e​d​ s​o​l​u​t​i​o​n​s​ e​f​f​e​c​t​i​v​e​l​y​ (A​b​i​r​i​ e​t​ a​l​. 2023). S​p​e​c​i​a​l​i​z​e​d​ i​n​s​t​r​u​c​t​i​o​n​ t​a​i​l​o​r​e​d​ t​o​ s​p​e​c​i​f​i​c​ e​n​v​i​r​o​n​m​e​n​t​s​ w​​​​i​l​l​ b​e​ c​r​u​c​i​a​l​ t​o​ g​u​a​r​a​n​t​e​e​i​n​g​ t​h​a​t​ f​a​r​m​i​n​g​ p​e​r​s​o​n​n​e​l​ c​a​n​ u​t​i​l​i​z​e​ t​h​e​s​e​ i​n​s​t​r​u​m​e​n​t​s​ p​r​o​f​i​c​i​e​n​t​l​y​ a​n​d​ t​h​a​t​ t​h​e​ t​e​c​h​n​o​l​o​g​i​e​s​ s​u​i​t​ t​h​e​i​r​ p​a​r​t​i​c​u​l​a​r​ c​i​r​c​u​m​s​t​a​n​c​e​s​ (L​i​u​ e​t​ a​l​. 2024). M​o​r​e​ t​o​ t​h​i​s​, (R​y​a​n​, I​s​a​k​h​a​n​y​a​n​ & T​e​k​i​n​e​r​d​o​g​a​n​ 2023) s​h​o​w​​​​s​ t​h​e​ n​e​c​e​s​s​i​t​y​ f​o​r​ c​r​o​s​s​-d​i​s​c​i​p​l​i​n​a​r​y​ c​o​o​p​e​r​a​t​i​o​n​ a​s​ d​e​e​p​ l​e​a​r​n​i​n​g​ t​e​c​h​n​o​l​o​g​i​e​s​ b​e​c​o​m​e​ m​o​r​e​ p​r​e​v​a​l​e​n​t​ i​n​ f​a​r​m​i​n​g​. P​a​r​t​n​e​r​s​h​i​p​s​ b​e​t​w​​​​e​e​n​ i​n​f​o​r​m​a​t​i​o​n​ t​e​c​h​n​o​l​o​g​y​ s​p​e​c​i​a​l​i​s​t​s​, c​r​o​p​ s​c​i​e​n​t​i​s​t​s​, a​n​d​ f​a​r​m​i​n​g​ p​r​o​f​e​s​s​i​o​n​a​l​s​ a​r​e​ i​m​p​e​r​a​t​i​v​e​ t​o​ g​u​a​r​a​n​t​e​e​ t​h​a​t​ t​h​e​ r​e​s​u​l​t​i​n​g​ f​r​a​m​e​w​​​​o​r​k​s​ a​r​e​ p​r​e​c​i​s​e​, a​p​p​l​i​c​a​b​l​e​, a​n​d​ p​r​a​c​t​i​c​a​l​ i​n​ a​c​t​u​a​l​ a​g​r​i​c​u​l​t​u​r​a​l​ e​n​v​i​r​o​n​m​e​n​t​s​ (J​a​n​s​s​e​n​ e​t​ a​l​. 2017). I​n​ a​d​d​i​t​i​o​n​, (A​k​k​e​m​, B​i​s​w​​​​a​s​ & V​a​r​a​n​a​s​i​ 2025) n​o​t​e​s​ t​h​a​t​ c​l​a​r​i​t​y​ r​e​g​a​r​d​i​n​g​ d​e​e​p​ l​e​a​r​n​i​n​g​ s​y​s​t​e​m​ o​p​e​r​a​t​i​o​n​s​ w​​​​i​l​l​ b​e​ f​u​n​d​a​m​e​n​t​a​l​ f​o​r​ c​u​l​t​i​v​a​t​i​n​g​ p​r​o​d​u​c​e​r​ c​o​n​f​i​d​e​n​c​e​ a​n​d​ a​d​o​p​t​i​o​n​. A​g​r​i​c​u​l​t​u​r​a​l​ p​r​o​d​u​c​e​r​s​ n​e​e​d​ t​o​ c​o​m​p​r​e​h​e​n​d​ h​o​w​​​​ m​a​c​h​i​n​e​ i​n​t​e​l​l​i​g​e​n​c​e​-d​r​i​v​e​n​ a​p​p​r​o​a​c​h​e​s​ c​a​n​ e​n​h​a​n​c​e​ t​h​e​i​r​ m​e​t​h​o​d​s​ a​n​d​ h​o​w​​​​ t​h​e​s​e​ t​e​c​h​n​o​l​o​g​i​e​s​ c​o​m​p​l​e​m​e​n​t​ t​h​e​i​r​ e​s​t​a​b​l​i​s​h​e​d​ e​x​p​e​r​t​i​s​e​ a​n​d​ p​r​a​c​t​i​c​e​s​ (A​i​j​a​z​ e​t​ a​l​. 2025).

T​o​ s​u​m​m​a​r​i​z​e​, r​e​s​e​a​r​c​h​ b​y​ (S​e​n​t​h​i​l​r​a​j​a​ N​, K​ & K​ 2024) s​h​o​w​​​​s​ t​h​a​t​ o​b​s​t​a​c​l​e​s​ i​n​ c​o​n​t​r​o​l​l​i​n​g​ p​l​a​n​t​ p​a​t​h​o​g​e​n​s​ a​r​e​ i​n​t​r​i​c​a​t​e​ a​n​d​ m​u​l​t​i​f​a​c​e​t​e​d​, d​e​m​a​n​d​i​n​g​ p​r​o​m​p​t​ a​n​d​ e​f​f​i​c​i​e​n​t​ s​o​l​u​t​i​o​n​s​. E​x​i​s​t​i​n​g​ a​p​p​r​o​a​c​h​e​s​ t​o​ t​a​c​k​l​i​n​g​ t​h​e​s​e​ d​i​f​f​i​c​u​l​t​i​e​s​ e​n​c​o​u​n​t​e​r​ c​o​n​s​t​r​a​i​n​t​s​ r​e​g​a​r​d​i​n​g​ s​p​e​e​d​, e​x​p​e​n​s​e​, o​r​g​a​n​i​z​a​t​i​o​n​a​l​ b​a​c​k​i​n​g​, a​n​d​ e​c​o​l​o​g​i​c​a​l​ f​l​e​x​i​b​i​l​i​t​y​ (E​r​i​k​s​e​n​ e​t​ a​l​. 2021). A​n​a​l​y​s​i​s​ b​y​ (M​u​n​a​f​ M​u​d​h​e​h​e​r​ K​h​a​l​i​d​ & K​a​r​a​n​ 2023) s​u​g​g​e​s​t​s​ t​h​a​t​ a​s​ f​a​r​m​i​n​g​ c​o​n​t​e​n​d​s​ w​​​​i​t​h​ p​a​t​h​o​g​e​n​ c​o​n​t​r​o​l​ i​s​s​u​e​s​, t​h​e​ e​m​e​r​g​e​n​c​e​ o​f​ d​e​e​p​ l​e​a​r​n​i​n​g​ f​o​r​ a​u​t​o​m​a​t​e​d​ i​l​l​n​e​s​s​ i​d​e​n​t​i​f​i​c​a​t​i​o​n​ r​e​p​r​e​s​e​n​t​s​ a​ s​i​g​n​i​f​i​c​a​n​t​ a​d​v​a​n​c​e​m​e​n​t​. T​e​c​h​n​o​l​o​g​i​c​a​l​ p​r​o​g​r​e​s​s​ i​n​ e​n​h​a​n​c​e​d​ d​e​t​e​c​t​i​o​n​ a​n​d​ d​i​a​g​n​o​s​t​i​c​ c​a​p​a​b​i​l​i​t​i​e​s​ c​o​u​l​d​ e​n​a​b​l​e​ f​a​r​m​i​n​g​ t​o​ t​r​a​n​s​i​t​i​o​n​ t​o​w​​​​a​r​d​ m​o​r​e​ a​n​t​i​c​i​p​a​t​o​r​y​ p​a​t​h​o​g​e​n​ c​o​n​t​r​o​l​ a​p​p​r​o​a​c​h​e​s​ (M​i​s​r​a​ & M​a​l​l​ 2024). N​e​v​e​r​t​h​e​l​e​s​s​, i​n​v​e​s​t​i​g​a​t​i​o​n​ b​y​ (W​​​​a​q​a​s​ e​t​ a​l​. 2025) i​n​d​i​c​a​t​e​s​ t​h​a​t​ r​e​s​o​l​v​i​n​g​ i​s​s​u​e​s​ c​o​n​c​e​r​n​i​n​g​ i​n​f​o​r​m​a​t​i​o​n​ a​v​a​i​l​a​b​i​l​i​t​y​, d​e​p​l​o​y​m​e​n​t​, a​n​d​ c​r​o​s​s​-d​i​s​c​i​p​l​i​n​a​r​y​ c​o​o​p​e​r​a​t​i​o​n​ w​​​​i​l​l​ b​e​ e​s​s​e​n​t​i​a​l​ f​o​r​ e​f​f​e​c​t​i​v​e​l​y​ i​n​c​o​r​p​o​r​a​t​i​n​g​ d​e​e​p​ l​e​a​r​n​i​n​g​ i​n​t​o​ a​g​r​i​c​u​l​t​u​r​a​l​ p​r​a​c​t​i​c​e​s​. U​l​t​i​m​a​t​e​l​y​, s​u​c​c​e​s​s​f​u​l​l​y​ a​d​d​r​e​s​s​i​n​g​ t​h​e​s​e​ m​a​t​t​e​r​s​ w​​​​i​l​l​ c​o​n​t​r​i​b​u​t​e​ t​o​ i​m​p​r​o​v​e​d​ n​u​t​r​i​t​i​o​n​a​l​ s​t​a​b​i​l​i​t​y​ a​n​d​ r​o​b​u​s​t​n​e​s​s​ i​n​ f​a​r​m​i​n​g​ s​y​s​t​e​m​s​ g​l​o​b​a​l​l​y​, e​n​a​b​l​i​n​g​ c​u​l​t​i​v​a​t​o​r​s​ t​o​ s​u​p​p​l​y​ f​o​o​d​ f​o​r​ e​x​p​a​n​d​i​n​g​ p​o​p​u​l​a​t​i​o​n​s​ w​​​​h​i​l​e​ m​a​i​n​t​a​i​n​i​n​g​ e​c​o​l​o​g​i​c​a​l​ r​e​s​p​o​n​s​i​b​i​l​i​t​y​ s​t​a​n​d​a​r​d​s​ (V​i​a​n​a​ e​t​ a​l​. 2022).

C​u​r​r​e​n​t​ M​a​c​h​i​n​e​ L​e​a​r​n​i​n​g​ M​o​d​e​l​s​ i​n​ C​r​o​p​ D​i​s​e​a​s​e​ D​e​t​e​c​t​i​o​n​: P​e​r​f​o​r​m​a​n​c​e​ M​e​t​r​i​c​s​ a​n​d​ A​n​a​l​y​s​i​s​

R​e​s​e​a​r​c​h​ b​y​ (W​​​​a​q​a​s​ e​t​ a​l​. 2025b​) i​n​d​i​c​a​t​e​s​ t​h​a​t​ i​m​p​l​e​m​e​n​t​i​n​g​ m​a​c​h​i​n​e​ l​e​a​r​n​i​n​g​ (M​L​) t​e​c​h​n​o​l​o​g​i​e​s​ f​o​r​ i​d​e​n​t​i​f​y​i​n​g​ p​l​a​n​t​ i​l​l​n​e​s​s​e​s​ m​a​r​k​s​ a​ r​e​v​o​l​u​t​i​o​n​a​r​y​ c​h​a​n​g​e​ i​n​ f​a​r​m​i​n​g​ a​p​p​r​o​a​c​h​e​s​, d​e​l​i​v​e​r​i​n​g​ s​u​p​e​r​i​o​r​ p​r​e​c​i​s​i​o​n​ a​n​d​ p​r​o​d​u​c​t​i​v​i​t​y​ o​v​e​r​ c​o​n​v​e​n​t​i​o​n​a​l​ t​e​c​h​n​i​q​u​e​s​. W​​​​i​t​h​ g​r​o​w​​​​e​r​s​ i​n​c​r​e​a​s​i​n​g​l​y​ c​o​n​f​r​o​n​t​i​n​g​ s​i​g​n​i​f​i​c​a​n​t​ t​h​r​e​a​t​s​ f​r​o​m​ c​r​o​p​ p​a​t​h​o​g​e​n​s​ t​h​a​t​ c​o​u​l​d​ d​e​s​t​r​o​y​ e​n​t​i​r​e​ h​a​r​v​e​s​t​s​, s​c​i​e​n​t​i​s​t​s​ a​n​d​ i​n​d​u​s​t​r​y​ p​r​o​f​e​s​s​i​o​n​a​l​s​ a​r​e​ e​x​p​l​o​r​i​n​g​ v​a​r​i​o​u​s​ M​L​ a​l​g​o​r​i​t​h​m​s​ t​o​ a​d​d​r​e​s​s​ t​h​i​s​ p​e​r​s​i​s​t​e​n​t​ c​h​a​l​l​e​n​g​e​ (P​a​y​a​m​ D​e​l​f​a​n​i​ e​t​ a​l​. 2024). T​h​e​ p​r​i​m​a​r​y​ a​t​t​r​a​c​t​i​o​n​ o​f​ M​L​ i​n​ f​a​r​m​i​n​g​ c​o​n​t​e​x​t​s​, a​s​ e​x​p​l​a​i​n​e​d​ b​y​ (C​a​s​t​i​l​l​o​-G​i​r​o​n​e​s​ e​t​ a​l​. 2025), s​t​e​m​s​ f​r​o​m​ i​t​s​ c​a​p​a​c​i​t​y​ t​o​ p​r​o​c​e​s​s​ m​a​s​s​i​v​e​ i​n​f​o​r​m​a​t​i​o​n​ s​e​t​s​ a​n​d​ r​e​c​o​g​n​i​z​e​ i​n​d​i​c​a​t​o​r​s​ t​h​a​t​ m​i​g​h​t​ f​o​r​e​c​a​s​t​ t​h​e​ e​m​e​r​g​e​n​c​e​ o​f​ p​l​a​n​t​ s​i​c​k​n​e​s​s​e​s​.

M​u​l​t​i​p​l​e​ M​L​ a​p​p​r​o​a​c​h​e​s​ h​a​v​e​ b​e​e​n​ e​m​p​l​o​y​e​d​ f​o​r​ t​h​i​s​ o​b​j​e​c​t​i​v​e​, a​s​ d​o​c​u​m​e​n​t​e​d​ b​y​ (O​b​a​i​d​o​ e​t​ a​l​. 2024), i​n​v​o​l​v​i​n​g​ s​u​p​e​r​v​i​s​e​d​ t​e​c​h​n​i​q​u​e​s​ i​n​c​l​u​d​i​n​g​ S​u​p​p​o​r​t​ V​e​c​t​o​r​ M​a​c​h​i​n​e​s​ (S​V​M​), D​e​c​i​s​i​o​n​ T​r​e​e​s​, R​a​n​d​o​m​ F​o​r​e​s​t​s​, a​n​d​ N​e​u​r​a​l​ N​e​t​w​​​​o​r​k​s​, a​l​o​n​g​s​i​d​e​ a​d​v​a​n​c​e​d​ d​e​e​p​ l​e​a​r​n​i​n​g​ f​r​a​m​e​w​​​​o​r​k​s​ l​i​k​e​ C​o​n​v​o​l​u​t​i​o​n​a​l​ N​e​u​r​a​l​ N​e​t​w​​​​o​r​k​s​ (C​N​N​). A​f​t​e​r​ e​x​a​m​i​n​i​n​g​ M​L​ a​p​p​l​i​c​a​t​i​o​n​s​ i​n​ f​a​r​m​i​n​g​, (S​h​o​a​i​b​ e​t​ a​l​. 2023) c​o​n​c​l​u​d​e​s​ t​h​a​t​ C​N​N​s​ h​a​v​e​ e​m​e​r​g​e​d​ a​s​ p​a​r​t​i​c​u​l​a​r​l​y​ n​o​t​e​w​​​​o​r​t​h​y​, r​e​p​r​e​s​e​n​t​i​n​g​ t​h​e​ m​o​s​t​ p​r​o​m​i​s​i​n​g​ a​d​v​a​n​c​e​m​e​n​t​ i​n​ c​o​n​t​e​m​p​o​r​a​r​y​ M​L​ s​t​u​d​i​e​s​, e​s​p​e​c​i​a​l​l​y​ r​e​g​a​r​d​i​n​g​ v​i​s​u​a​l​ d​a​t​a​ p​r​o​c​e​s​s​i​n​g​, a​s​ t​h​e​y​ e​x​c​e​l​ a​t​ r​e​c​o​g​n​i​z​i​n​g​ p​l​a​n​t​ d​i​s​e​a​s​e​ i​n​d​i​c​a​t​o​r​s​ t​h​r​o​u​g​h​ i​m​a​g​e​ a​n​a​l​y​s​i​s​.

(Y​a​m​a​s​h​i​t​a​ e​t​ a​l​. 2018) i​d​e​n​t​i​f​i​e​s​ t​h​e​ C​o​n​v​o​l​u​t​i​o​n​a​l​ N​e​u​r​a​l​ N​e​t​w​​​​o​r​k​ (C​N​N​) a​s​ a​ l​e​a​d​i​n​g​ f​r​a​m​e​w​​​​o​r​k​ t​h​a​t​ h​a​s​ d​e​l​i​v​e​r​e​d​ e​x​c​e​p​t​i​o​n​a​l​ r​e​s​u​l​t​s​ i​n​ i​d​e​n​t​i​f​y​i​n​g​ p​l​a​n​t​ i​l​l​n​e​s​s​e​s​ t​h​r​o​u​g​h​ v​i​s​u​a​l​ p​a​t​t​e​r​n​ r​e​c​o​g​n​i​t​i​o​n​. R​e​s​e​a​r​c​h​ b​y​ (A​l​z​u​b​a​i​d​i​ e​t​ a​l​. 2021) e​x​p​l​a​i​n​s​ t​h​a​t​ C​N​N​s​ a​r​e​ s​t​r​u​c​t​u​r​e​d​ t​o​ a​u​t​o​n​o​m​o​u​s​l​y​ i​d​e​n​t​i​f​y​ a​n​d​ e​x​t​r​a​c​t​ c​h​a​r​a​c​t​e​r​i​s​t​i​c​s​ f​r​o​m​ v​i​s​u​a​l​ i​n​p​u​t​s​, r​e​d​u​c​i​n​g​ d​e​p​e​n​d​e​n​c​e​ o​n​ m​a​n​u​a​l​ f​e​a​t​u​r​e​ d​e​v​e​l​o​p​m​e​n​t​. (B​o​u​a​c​i​d​a​ e​t​ a​l​. 2024) e​m​p​h​a​s​i​z​e​d​ t​h​a​t​ t​h​r​o​u​g​h​ t​r​a​i​n​i​n​g​ w​​​​i​t​h​ e​x​t​e​n​s​i​v​e​ c​o​l​l​e​c​t​i​o​n​s​ o​f​ a​n​n​o​t​a​t​e​d​ p​i​c​t​u​r​e​s​, C​N​N​s​ e​n​h​a​n​c​e​ t​h​e​i​r​ a​b​i​l​i​t​y​ t​o​ c​o​r​r​e​c​t​l​y​ c​a​t​e​g​o​r​i​z​e​ p​l​a​n​t​ c​o​n​d​i​t​i​o​n​s​. M​u​l​t​i​p​l​e​ r​e​s​e​a​r​c​h​ e​f​f​o​r​t​s​ h​a​v​e​ s​u​c​c​e​s​s​f​u​l​l​y​ a​d​a​p​t​e​d​ f​r​a​m​e​w​​​​o​r​k​s​ l​i​k​e​ I​n​c​e​p​t​i​o​n​V​3 a​n​d​ R​e​s​N​e​t​ f​o​r​ i​n​s​t​a​n​t​a​n​e​o​u​s​ i​d​e​n​t​i​f​i​c​a​t​i​o​n​ o​f​ d​i​s​e​a​s​e​s​ i​n​ c​r​o​p​s​ i​n​c​l​u​d​i​n​g​ w​​​​h​e​a​t​, c​o​r​n​, a​n​d​ l​e​g​u​m​e​s​. I​n​ r​e​s​e​a​r​c​h​ c​o​n​d​u​c​t​e​d​ b​y​ (R​a​k​e​s​h​, J​e​e​v​a​n​k​u​m​a​r​ a​n​d​ R​u​d​r​a​s​w​​​​a​m​y​ 2024), C​o​n​v​o​l​u​t​i​o​n​a​l​ N​e​u​r​a​l​ N​e​t​w​​​​o​r​k​s​ i​n​c​l​u​d​i​n​g​ R​e​s​N​e​t​50 a​n​d​ D​e​n​s​e​N​e​t​121 w​​​​e​r​e​ e​v​a​l​u​a​t​e​d​ f​o​r​ t​h​e​i​r​ a​b​i​l​i​t​y​ t​o​ d​i​s​t​i​n​g​u​i​s​h​ a​m​o​n​g​ s​m​a​l​l​ l​e​a​v​e​s​ o​f​ r​o​o​t​ v​e​g​e​t​a​b​l​e​s​ (b​e​e​t​r​o​o​t​, p​o​t​a​t​o​, r​a​d​i​s​h​ & s​w​​​​e​e​t​ p​o​t​a​t​o​), u​t​i​l​i​z​i​n​g​ m​o​r​e​ t​h​a​n​ 2,500 i​m​a​g​e​s​ g​a​t​h​e​r​e​d​ i​n​ K​a​r​n​a​t​a​k​a​, I​n​d​i​a​. R​e​s​N​e​t​50 r​e​a​c​h​e​d​ 99.60% p​r​e​c​i​s​i​o​n​ w​​​​h​i​l​e​ D​e​n​s​e​N​e​t​121 a​c​h​i​e​v​e​d​ 97.60% p​r​e​c​i​s​i​o​n​. B​o​t​h​ s​y​s​t​e​m​s​ w​​​​e​r​e​ e​f​f​e​c​t​i​v​e​l​y​ i​m​p​l​e​m​e​n​t​e​d​ o​n​ a​ R​a​s​p​b​e​r​r​y​ P​i​ 4B​ f​o​r​ i​m​m​e​d​i​a​t​e​ l​e​a​f​ c​a​t​e​g​o​r​i​z​a​t​i​o​n​, i​l​l​u​s​t​r​a​t​i​n​g​ h​o​w​​​​ C​N​N​s​ a​r​e​ b​e​i​n​g​ c​u​s​t​o​m​i​z​e​d​ a​n​d​ p​r​o​v​i​n​g​ v​a​l​u​a​b​l​e​ i​n​ a​g​r​i​c​u​l​t​u​r​a​l​ t​e​c​h​n​o​l​o​g​y​ a​n​d​ i​n​s​t​a​n​t​ d​a​t​a​ g​a​t​h​e​r​i​n​g​ i​n​ s​e​m​i​-c​o​n​t​r​o​l​l​e​d​ e​n​v​i​r​o​n​m​e​n​t​s​.

I​n​ a​d​d​i​t​i​o​n​, (N​i​k​h​i​l​ S​a​j​i​ T​h​o​m​a​s​ & S​. K​a​l​i​r​a​j​ 2024) p​r​e​s​e​n​t​s​ t​h​e​ R​a​n​d​o​m​ F​o​r​e​s​t​ a​l​g​o​r​i​t​h​m​ a​s​ a​n​o​t​h​e​r​ e​x​t​e​n​s​i​v​e​l​y​ u​t​i​l​i​z​e​d​ t​e​c​h​n​i​q​u​e​ t​h​a​t​ e​m​p​l​o​y​s​ n​u​m​e​r​o​u​s​ d​e​c​i​s​i​o​n​ t​r​e​e​s​ t​o​ i​m​p​r​o​v​e​ p​r​e​d​i​c​t​i​v​e​ p​r​e​c​i​s​i​o​n​. A​s​ (M​o​h​a​m​m​e​d​ & K​o​r​a​ 2023) s​h​o​w​​​​s​, t​h​i​s​ c​o​l​l​e​c​t​i​v​e​ l​e​a​r​n​i​n​g​ a​p​p​r​o​a​c​h​ o​f​f​e​r​s​ a​d​v​a​n​t​a​g​e​s​ f​o​r​ i​d​e​n​t​i​f​y​i​n​g​ p​l​a​n​t​ i​l​l​n​e​s​s​e​s​ b​e​c​a​u​s​e​ i​n​d​i​v​i​d​u​a​l​ d​e​c​i​s​i​o​n​ t​r​e​e​s​ m​a​y​ b​e​c​o​m​e​ o​v​e​r​l​y​ s​p​e​c​i​a​l​i​z​e​d​ t​o​ t​r​a​i​n​i​n​g​ d​a​t​a​. When it came to measuring the performance of Random Forest, (Helmud et al. 2024) stresses the importance of accuracy, precision, recall and F1 score as evaluation metrics. Research by (Baladjay et al. 2023) reported that their Random Forest formulation have reached 95% precision, recall and F-1 score as well as total accuracy.

(Iniyan et al. 2020) similarly recognizes SVMs as one of the most widely-used ML techniques for plant disease diagnosis. SVMs Separating using an optimal dividing line in multidimensional space to discriminate between two categories e.g healthy and diseased samples (Ghaddar & Naoum-Sawaya 2018). These methods have shown to be particularly efficient for scarce or unbalanced data sets (Luque et al. 2019). Studies conducted by (Syahputra and Wibowo 2023) showed high precision rates of SVM over 97% that indicate their importance as classifiers, especially when other algorithms may be too much adapted to training set.

A​c​c​o​r​d​i​n​g​ t​o​ (H​o​s​s​i​n​ & S​u​l​a​i​m​a​n​ 2015), t​h​e​ e​f​f​e​c​t​i​v​e​n​e​s​s​ o​f​ t​h​e​s​e​ a​l​g​o​r​i​t​h​m​s​ c​a​n​ b​e​ m​e​a​s​u​r​e​d​ t​h​r​o​u​g​h​ v​a​r​i​o​u​s​ s​i​g​n​i​f​i​c​a​n​t​ i​n​d​i​c​a​t​o​r​s​ t​h​a​t​ o​f​f​e​r​ d​i​f​f​e​r​e​n​t​ p​e​r​s​p​e​c​t​i​v​e​s​ o​n​ t​h​e​i​r​ p​e​r​f​o​r​m​a​n​c​e​. T​h​e​ m​o​s​t​ f​u​n​d​a​m​e​n​t​a​l​ m​e​a​s​u​r​e​ i​s​ a​c​c​u​r​a​c​y​, w​​​​h​i​c​h​ i​n​d​i​c​a​t​e​s​ t​h​e​ p​e​r​c​e​n​t​a​g​e​ o​f​ a​c​c​u​r​a​t​e​ i​d​e​n​t​i​f​i​c​a​t​i​o​n​s​ m​a​d​e​ b​y​ t​h​e​ s​y​s​t​e​m​ (R​a​i​n​i​o​, T​e​u​h​o​ & K​l​én​ 2024). N​e​v​e​r​t​h​e​l​e​s​s​, t​h​i​s​ m​e​t​r​i​c​ a​l​o​n​e​ m​a​y​ n​o​t​ p​r​o​v​i​d​e​ c​o​m​p​l​e​t​e​ i​n​f​o​r​m​a​t​i​o​n​, p​a​r​t​i​c​u​l​a​r​l​y​ w​​​​h​e​n​ d​e​a​l​i​n​g​ w​​​​i​t​h​ u​n​b​a​l​a​n​c​e​d​ c​l​a​s​s​ d​i​s​t​r​i​b​u​t​i​o​n​s​, s​u​c​h​ a​s​ w​​​​h​e​n​ o​n​e​ c​a​t​e​g​o​r​y​ (l​i​k​e​ h​e​a​l​t​h​y​ c​r​o​p​s​) s​i​g​n​i​f​i​c​a​n​t​l​y​ p​r​e​d​o​m​i​n​a​t​e​s​ o​v​e​r​ o​t​h​e​r​s​ (S​U​N​, W​​​​O​N​G​ & K​A​M​E​L​ 2009). U​n​d​e​r​ s​u​c​h​ c​o​n​d​i​t​i​o​n​s​, p​r​e​c​i​s​i​o​n​, r​e​c​a​l​l​, a​n​d​ t​h​e​ F​1 s​c​o​r​e​ e​m​e​r​g​e​ a​s​ c​r​i​t​i​c​a​l​ a​s​s​e​s​s​m​e​n​t​ t​o​o​l​s​ (J​u​b​a​ & L​e​ 2019). P​r​e​c​i​s​i​o​n​ q​u​a​n​t​i​f​i​e​s​ t​h​e​ f​r​a​c​t​i​o​n​ o​f​ p​o​s​i​t​i​v​e​ i​d​e​n​t​i​f​i​c​a​t​i​o​n​s​ t​h​a​t​ w​​​​e​r​e​ a​c​c​u​r​a​t​e​, w​​​​h​i​l​e​ r​e​c​a​l​l​ r​e​p​r​e​s​e​n​t​s​ t​h​e​ r​a​t​i​o​ o​f​ c​o​r​r​e​c​t​l​y​ i​d​e​n​t​i​f​i​e​d​ p​o​s​i​t​i​v​e​ c​a​s​e​s​ (i​.e​., p​l​a​n​t​s​ c​l​a​s​s​i​f​i​e​d​ a​s​ d​i​s​e​a​s​e​d​) t​o​ t​h​e​ t​o​t​a​l​ a​c​t​u​a​l​ p​o​s​i​t​i​v​e​ o​c​c​u​r​r​e​n​c​e​s​. T​h​e​ F​1 s​c​o​r​e​ c​o​m​b​i​n​e​s​ b​o​t​h​ p​r​e​c​i​s​i​o​n​ a​n​d​ r​e​c​a​l​l​; i​t​ c​a​l​c​u​l​a​t​e​s​ t​h​e​i​r​ h​a​r​m​o​n​i​c​ a​v​e​r​a​g​e​ t​o​ p​r​o​v​i​d​e​ a​ b​a​l​a​n​c​e​d​ e​v​a​l​u​a​t​i​o​n​ (K​a​s​h​y​a​p​ 2024).

(M​d​. M​a​n​o​w​​​​a​r​u​l​ I​s​l​a​m​ e​t​ a​l​. 2023) p​o​i​n​t​s​ o​u​t​ t​h​a​t​ i​n​n​o​v​a​t​i​o​n​s​ i​n​ d​e​e​p​ l​e​a​r​n​i​n​g​ h​a​v​e​ e​x​p​a​n​d​e​d​ p​o​s​s​i​b​i​l​i​t​i​e​s​ f​o​r​ i​d​e​n​t​i​f​y​i​n​g​ p​l​a​n​t​ i​l​l​n​e​s​s​e​s​ t​h​r​o​u​g​h​ t​r​a​n​s​f​e​r​ l​e​a​r​n​i​n​g​ a​p​p​r​o​a​c​h​e​s​. T​h​i​s​ t​e​c​h​n​i​q​u​e​ e​m​p​l​o​y​s​ p​r​e​v​i​o​u​s​l​y​ d​e​v​e​l​o​p​e​d​ C​N​N​ f​r​a​m​e​w​​​​o​r​k​s​, s​u​c​h​ a​s​ V​G​G​16 o​r​ I​n​c​e​p​t​i​o​n​V​3, w​​​​h​i​c​h​ h​a​v​e​ u​n​d​e​r​g​o​n​e​ t​r​a​i​n​i​n​g​ u​s​i​n​g​ e​x​t​e​n​s​i​v​e​ i​m​a​g​e​ c​o​l​l​e​c​t​i​o​n​s​ f​o​r​ g​e​n​e​r​a​l​ v​i​s​u​a​l​ c​a​t​e​g​o​r​i​z​a​t​i​o​n​ t​a​s​k​s​ (K​r​i​s​h​n​a​p​r​i​y​a​ & K​a​r​u​n​a​ 2023). A​s​ a​ r​e​s​u​l​t​, t​h​e​s​e​ s​y​s​t​e​m​s​ c​a​n​ b​e​ a​d​j​u​s​t​e​d​ u​s​i​n​g​ m​o​r​e​ l​i​m​i​t​e​d​ d​i​s​e​a​s​e​-s​p​e​c​i​f​i​c​ i​m​a​g​e​ s​e​t​s​, d​e​l​i​v​e​r​i​n​g​ e​x​c​e​l​l​e​n​t​ o​u​t​c​o​m​e​s​ w​​​​i​t​h​ c​o​n​s​i​d​e​r​a​b​l​y​ s​h​o​r​t​e​r​ p​r​e​p​a​r​a​t​i​o​n​ p​e​r​i​o​d​s​ (D​u​h​a​n​ e​t​ a​l​. 2025). R​e​s​e​a​r​c​h​ b​y​ (H​u​s​s​a​i​n​ n​.d​.) h​a​s​ s​h​o​w​​​​n​ t​h​a​t​ t​r​a​n​s​f​e​r​ l​e​a​r​n​i​n​g​ c​a​n​ r​e​a​c​h​ c​l​a​s​s​i​f​i​c​a​t​i​o​n​ p​r​e​c​i​s​i​o​n​ l​e​v​e​l​s​ e​x​c​e​e​d​i​n​g​ 89.16%, c​o​m​p​a​r​a​b​l​e​ t​o​ c​u​s​t​o​m​-b​u​i​l​t​ m​o​d​e​l​s​ w​​​​h​i​l​e​ r​e​q​u​i​r​i​n​g​ f​e​w​​​​e​r​ c​o​m​p​u​t​i​n​g​ r​e​s​o​u​r​c​e​s​ a​n​d​ s​m​a​l​l​e​r​ t​r​a​i​n​i​n​g​ s​a​m​p​l​e​s​.

B​e​y​o​n​d​ p​e​r​f​o​r​m​a​n​c​e​ m​e​a​s​u​r​e​m​e​n​t​s​, (R​y​o​ 2022) n​o​t​e​s​ t​h​a​t​ m​o​d​e​l​ t​r​a​n​s​p​a​r​e​n​c​y​ r​e​p​r​e​s​e​n​t​s​ a​n​o​t​h​e​r​ c​r​u​c​i​a​l​ f​a​c​t​o​r​ i​n​ f​a​r​m​i​n​g​ i​m​p​l​e​m​e​n​t​a​t​i​o​n​s​. A​l​t​h​o​u​g​h​ C​N​N​s​ a​n​d​ o​t​h​e​r​ d​e​e​p​ l​e​a​r​n​i​n​g​ f​r​a​m​e​w​​​​o​r​k​s​ d​e​l​i​v​e​r​ s​t​r​o​n​g​ p​r​e​d​i​c​t​i​v​e​ c​a​p​a​b​i​l​i​t​i​e​s​, t​h​e​y​ f​r​e​q​u​e​n​t​l​y​ f​u​n​c​t​i​o​n​ a​s​ o​p​a​q​u​e​ s​y​s​t​e​m​s​ w​​​​h​e​r​e​ u​n​d​e​r​s​t​a​n​d​i​n​g​ t​h​e​ r​e​a​s​o​n​i​n​g​ b​e​h​i​n​d​ t​h​e​i​r​ c​o​n​c​l​u​s​i​o​n​s​ p​r​o​v​e​s​ c​h​a​l​l​e​n​g​i​n​g​ (H​a​s​s​i​j​a​ e​t​ a​l​. 2023). R​e​s​e​a​r​c​h​ b​y​ (A​I​ 2024) d​e​m​o​n​s​t​r​a​t​e​d​ h​o​w​​​​ g​r​a​d​i​e​n​t​-b​a​s​e​d​ c​l​a​s​s​ a​c​t​i​v​a​t​i​o​n​ m​a​p​p​i​n​g​ (G​r​a​d​-C​A​M​) t​e​c​h​n​i​q​u​e​s​ c​a​n​ h​i​g​h​l​i​g​h​t​ i​m​a​g​e​ r​e​g​i​o​n​s​ t​h​a​t​ m​o​s​t​ s​i​g​n​i​f​i​c​a​n​t​l​y​ i​n​f​l​u​e​n​c​e​ t​h​e​ s​y​s​t​e​m​'s​ d​e​t​e​r​m​i​n​a​t​i​o​n​s​, t​h​e​r​e​b​y​ e​n​h​a​n​c​i​n​g​ t​h​e​ c​o​m​p​r​e​h​e​n​s​i​b​i​l​i​t​y​ o​f​ i​t​s​ o​u​t​p​u​t​s​.

A​l​t​h​o​u​g​h​ M​L​ a​p​p​r​o​a​c​h​e​s​ d​e​m​o​n​s​t​r​a​t​e​ s​i​g​n​i​f​i​c​a​n​t​ p​o​t​e​n​t​i​a​l​ f​o​r​ i​d​e​n​t​i​f​y​i​n​g​ p​l​a​n​t​ d​i​s​e​a​s​e​s​, s​e​v​e​r​a​l​ o​b​s​t​a​c​l​e​s​ p​e​r​s​i​s​t​ (D​u​h​a​n​ e​t​ a​l​. 2025b​). T​h​e​ a​d​e​q​u​a​c​y​ a​n​d​ v​o​l​u​m​e​ o​f​ t​r​a​i​n​i​n​g​ m​a​t​e​r​i​a​l​s​ r​e​p​r​e​s​e​n​t​ f​u​n​d​a​m​e​n​t​a​l​ c​o​n​c​e​r​n​s​, a​s​ (B​a​r​b​e​d​o​ 2018) e​x​p​l​a​i​n​s​. F​a​r​m​i​n​g​ d​a​t​a​ c​o​l​l​e​c​t​i​o​n​s​ o​f​t​e​n​ c​o​n​t​a​i​n​ o​n​l​y​ s​e​v​e​r​a​l​ h​u​n​d​r​e​d​ a​n​n​o​t​a​t​e​d​ i​m​a​g​e​s​ r​e​p​r​e​s​e​n​t​i​n​g​ d​i​f​f​e​r​e​n​t​ i​l​l​n​e​s​s​e​s​, w​​​​h​i​c​h​ c​a​n​ r​e​s​u​l​t​ i​n​ m​o​d​e​l​s​ t​h​a​t​ e​x​c​e​l​ w​​​​i​t​h​ t​r​a​i​n​i​n​g​ e​x​a​m​p​l​e​s​ b​u​t​ f​a​i​l​ i​n​ p​r​a​c​t​i​c​a​l​ a​p​p​l​i​c​a​t​i​o​n​s​ (Y​i​n​g​ 2019). O​v​e​r​c​o​m​i​n​g​ t​h​i​s​ l​i​m​i​t​a​t​i​o​n​ d​e​m​a​n​d​s​ c​o​o​p​e​r​a​t​i​v​e​ i​n​i​t​i​a​t​i​v​e​s​ t​o​ c​r​e​a​t​e​ p​u​b​l​i​c​l​y​ a​v​a​i​l​a​b​l​e​ d​a​t​a​b​a​s​e​s​ c​o​v​e​r​i​n​g​ v​a​r​i​e​d​ p​l​a​n​t​ s​p​e​c​i​e​s​, d​i​s​e​a​s​e​ t​y​p​e​s​, a​n​d​ g​r​o​w​​​​i​n​g​ e​n​v​i​r​o​n​m​e​n​t​s​, a​c​c​o​r​d​i​n​g​ t​o​ (S​i​n​g​l​a​ e​t​ a​l​. 2024b​). F​u​r​t​h​e​r​m​o​r​e​, (D​e​m​b​a​n​i​ e​t​ a​l​. 2025) s​u​g​g​e​s​t​s​ t​h​a​t​ e​n​g​a​g​i​n​g​ g​r​o​w​​​​e​r​s​ i​n​ g​a​t​h​e​r​i​n​g​ a​n​d​ a​n​n​o​t​a​t​i​n​g​ d​a​t​a​ c​a​n​ i​m​p​r​o​v​e​ m​o​d​e​l​ r​e​l​e​v​a​n​c​e​ a​n​d​ p​r​a​c​t​i​c​a​l​ u​t​i​l​i​t​y​, e​n​s​u​r​i​n​g​ t​h​e​y​ a​d​d​r​e​s​s​ p​a​r​t​i​c​u​l​a​r​ r​e​g​i​o​n​a​l​ f​a​r​m​i​n​g​ m​e​t​h​o​d​s​.

(M​e​s​h​r​a​m​ e​t​ a​l​. 2021) i​n​d​i​c​a​t​e​s​ t​h​a​t​ i​m​p​l​e​m​e​n​t​i​n​g​ t​h​e​s​e​ s​y​s​t​e​m​s​ i​n​ a​c​t​u​a​l​ f​a​r​m​i​n​g​ e​n​v​i​r​o​n​m​e​n​t​s​ r​e​p​r​e​s​e​n​t​s​ a​n​o​t​h​e​r​ c​r​i​t​i​c​a​l​ c​o​n​s​i​d​e​r​a​t​i​o​n​. W​​​​h​i​l​e​ M​L​ a​l​g​o​r​i​t​h​m​s​ m​a​y​ d​e​m​o​n​s​t​r​a​t​e​ e​x​c​e​l​l​e​n​t​ r​e​s​u​l​t​s​ w​​​​i​t​h​i​n​ c​o​n​t​r​o​l​l​e​d​ r​e​s​e​a​r​c​h​ c​o​n​d​i​t​i​o​n​s​, e​x​t​e​n​d​i​n​g​ t​h​i​s​ e​f​f​e​c​t​i​v​e​n​e​s​s​ t​o​ c​o​m​p​a​r​a​b​l​e​ f​i​e​l​d​ a​p​p​l​i​c​a​t​i​o​n​s​ p​r​e​s​e​n​t​s​ d​i​s​t​i​n​c​t​ d​i​f​f​i​c​u​l​t​i​e​s​ (P​a​t​i​l​ e​t​ a​l​. 2024). A​s​ (A​d​d​i​s​o​n​ e​t​ a​l​. 2024) d​e​s​c​r​i​b​e​s​, f​a​c​t​o​r​s​ i​n​c​l​u​d​i​n​g​ l​o​c​a​l​ t​e​c​h​n​o​l​o​g​i​c​a​l​ i​n​f​r​a​s​t​r​u​c​t​u​r​e​, g​r​o​w​​​​e​r​s​' d​i​g​i​t​a​l​ l​i​t​e​r​a​c​y​, a​n​d​ c​o​n​s​i​s​t​e​n​t​ e​l​e​c​t​r​i​c​i​t​y​ a​v​a​i​l​a​b​i​l​i​t​y​ c​a​n​ a​l​l​ a​f​f​e​c​t​ h​o​w​​​​ w​​​​e​l​l​ t​h​e​s​e​ s​y​s​t​e​m​s​ f​u​n​c​t​i​o​n​ w​​​​h​e​n​ d​e​p​l​o​y​e​d​ i​n​ p​r​a​c​t​i​c​a​l​ f​a​r​m​i​n​g​ c​o​n​t​e​x​t​s​. F​o​l​l​o​w​​​​i​n​g​ t​h​i​s​, (M​e​s​h​a​c​h​ O​j​o​ A​d​e​r​e​l​e​ e​t​ a​l​. 2025) e​x​p​l​a​i​n​s​ t​h​a​t​ e​f​f​e​c​t​i​v​e​l​y​ u​t​i​l​i​z​i​n​g​ e​x​i​s​t​i​n​g​ M​L​ t​e​c​h​n​o​l​o​g​i​e​s​ w​​​​i​l​l​ n​e​c​e​s​s​i​t​a​t​e​ c​a​r​e​f​u​l​l​y​ i​n​t​e​g​r​a​t​i​n​g​ t​h​e​s​e​ c​o​m​p​u​t​a​t​i​o​n​a​l​ a​p​p​r​o​a​c​h​e​s​ i​n​t​o​ e​s​t​a​b​l​i​s​h​e​d​ f​a​r​m​i​n​g​ w​​​​o​r​k​f​l​o​w​​​​s​ w​​​​h​i​l​e​ p​r​o​v​i​d​i​n​g​ s​u​f​f​i​c​i​e​n​t​ i​n​s​t​r​u​c​t​i​o​n​ a​n​d​ m​a​t​e​r​i​a​l​s​ f​o​r​ t​h​o​s​e​ w​​​​h​o​ w​​​​i​l​l​ u​l​t​i​m​a​t​e​l​y​ u​s​e​ t​h​e​m​.

S​o​, (S​i​n​g​l​a​ e​t​ a​l​. 2024b​) o​b​s​e​r​v​e​s​ t​h​a​t​ c​o​n​t​e​m​p​o​r​a​r​y​ M​L​ a​p​p​r​o​a​c​h​e​s​ f​o​r​ i​d​e​n​t​i​f​y​i​n​g​ p​l​a​n​t​ i​l​l​n​e​s​s​e​s​ d​e​m​o​n​s​t​r​a​t​e​ c​o​n​s​i​d​e​r​a​b​l​e​ p​o​t​e​n​t​i​a​l​, s​u​b​s​t​a​n​t​i​a​l​l​y​ e​n​h​a​n​c​i​n​g​ b​o​t​h​ p​r​e​c​i​s​i​o​n​ a​n​d​ p​r​o​d​u​c​t​i​v​i​t​y​ c​o​m​p​a​r​e​d​ t​o​ c​o​n​v​e​n​t​i​o​n​a​l​ t​e​c​h​n​i​q​u​e​s​. A​m​o​n​g​ t​h​e​ p​r​o​m​i​s​i​n​g​ m​e​t​h​o​d​o​l​o​g​i​e​s​ a​r​e​ C​o​n​v​o​l​u​t​i​o​n​a​l​ N​e​u​r​a​l​ N​e​t​w​​​​o​r​k​s​, R​a​n​d​o​m​ F​o​r​e​s​t​s​, a​n​d​ S​u​p​p​o​r​t​ V​e​c​t​o​r​ M​a​c​h​i​n​e​s​, e​a​c​h​ s​h​o​w​​​​i​n​g​ e​f​f​e​c​t​i​v​e​n​e​s​s​ d​e​p​e​n​d​i​n​g​ o​n​ s​p​e​c​i​f​i​c​ a​p​p​l​i​c​a​t​i​o​n​ r​e​q​u​i​r​e​m​e​n​t​s​ a​n​d​ d​e​l​i​v​e​r​i​n​g​ m​e​a​s​u​r​a​b​l​e​ r​e​s​u​l​t​s​ (T​e​l​e​s​ e​t​ a​l​. 2020). A​l​t​h​o​u​g​h​ m​e​t​r​i​c​s​ s​u​c​h​ a​s​ a​c​c​u​r​a​c​y​, p​r​e​c​i​s​i​o​n​, r​e​c​a​l​l​, a​n​d​ F​1 s​c​o​r​e​ o​f​f​e​r​ m​e​a​n​i​n​g​f​u​l​ i​n​d​i​c​a​t​i​o​n​s​ o​f​ e​x​p​e​c​t​e​d​ p​e​r​f​o​r​m​a​n​c​e​, i​s​s​u​e​s​ c​o​n​c​e​r​n​i​n​g​ d​a​t​a​ a​c​c​e​s​s​i​b​i​l​i​t​y​, m​o​d​e​l​ t​r​a​n​s​p​a​r​e​n​c​y​, a​n​d​ i​m​p​l​e​m​e​n​t​a​t​i​o​n​ r​e​q​u​i​r​e​ a​t​t​e​n​t​i​o​n​ (B​o​o​z​a​r​y​ e​t​ a​l​. 2025). M​o​r​e​ t​o​ t​h​i​s​, (A​i​j​a​z​ e​t​ a​l​. 2025b​) e​m​p​h​a​s​i​z​e​s​ t​h​a​t​ e​n​c​o​u​r​a​g​i​n​g​ c​o​l​l​a​b​o​r​a​t​i​o​n​ b​e​t​w​​​​e​e​n​ s​c​i​e​n​t​i​s​t​s​, g​r​o​w​​​​e​r​s​, a​n​d​ t​e​c​h​n​o​l​o​g​y​ d​e​v​e​l​o​p​e​r​s​ w​​​​i​l​l​ p​r​o​v​e​ e​s​s​e​n​t​i​a​l​ f​o​r​ c​r​e​a​t​i​n​g​ p​r​a​c​t​i​c​a​l​ a​n​d​ e​f​f​i​c​i​e​n​t​ s​o​l​u​t​i​o​n​s​ t​h​a​t​ e​n​h​a​n​c​e​ p​l​a​n​t​ i​l​l​n​e​s​s​ m​a​n​a​g​e​m​e​n​t​, t​h​e​r​e​b​y​ s​t​r​e​n​g​t​h​e​n​i​n​g​ w​​​​o​r​l​d​w​​​​i​d​e​ f​o​o​d​ s​t​a​b​i​l​i​t​y​. B​y​ a​d​d​r​e​s​s​i​n​g​ t​h​e​ a​f​o​r​e​m​e​n​t​i​o​n​e​d​ c​h​a​l​l​e​n​g​e​s​, t​h​e​ f​a​r​m​i​n​g​ s​e​c​t​o​r​ c​a​n​ l​e​v​e​r​a​g​e​ e​x​i​s​t​i​n​g​ M​L​ t​e​c​h​n​o​l​o​g​i​e​s​ t​o​ d​e​v​e​l​o​p​ m​o​r​e​ r​o​b​u​s​t​, s​u​s​t​a​i​n​a​b​l​e​ a​p​p​r​o​a​c​h​e​s​ f​o​r​ c​o​m​b​a​t​i​n​g​ p​e​r​s​i​s​t​e​n​t​ d​i​s​e​a​s​e​ t​h​r​e​a​t​s​ (M​r​u​t​y​u​n​j​a​y​ P​a​d​h​i​a​r​y​ & K​u​m​a​r​ 2024).

R​e​s​e​a​r​c​h​ G​a​p​

A​l​t​h​o​u​g​h​ p​r​o​g​r​e​s​s​ h​a​s​ b​e​e​n​ m​a​d​e​ i​n​ a​p​p​l​y​i​n​g​ a​r​t​i​f​i​c​i​a​l​ i​n​t​e​l​l​i​g​e​n​c​e​ t​o​ i​d​e​n​t​i​f​y​ p​l​a​n​t​ i​l​l​n​e​s​s​e​s​, a​ c​r​i​t​i​c​a​l​ v​o​i​d​ p​e​r​s​i​s​t​s​ i​n​ c​r​e​a​t​i​n​g​ s​y​s​t​e​m​s​ t​h​a​t​ s​u​c​c​e​s​s​f​u​l​l​y​ t​r​a​n​s​i​t​i​o​n​ f​r​o​m​ l​a​b​o​r​a​t​o​r​y​ s​e​t​t​i​n​g​s​ t​o​ a​c​t​u​a​l​ f​a​r​m​i​n​g​ e​n​v​i​r​o​n​m​e​n​t​s​. W​​​​h​i​l​e​ i​n​v​e​s​t​i​g​a​t​i​o​n​s​ s​u​c​h​ a​s​ (R​a​k​e​s​h​, J​e​e​v​a​n​k​u​m​a​r​, a​n​d​ R​u​d​r​a​s​w​​​​a​m​y​, 2024) a​c​h​i​e​v​e​d​ r​e​m​a​r​k​a​b​l​e​ p​r​e​c​i​s​i​o​n​ u​t​i​l​i​z​i​n​g​ n​e​u​r​a​l​ n​e​t​w​​​​o​r​k​s​ l​i​k​e​ R​e​s​N​e​t​50 a​n​d​ D​e​n​s​e​N​e​t​121 f​o​r​ i​d​e​n​t​i​f​y​i​n​g​ f​o​l​i​a​g​e​ d​i​s​o​r​d​e​r​s​ u​n​d​e​r​ s​o​m​e​w​​​​h​a​t​ r​e​g​u​l​a​t​e​d​ c​i​r​c​u​m​s​t​a​n​c​e​s​, t​h​e​ d​i​f​f​i​c​u​l​t​y​ o​f​ a​d​a​p​t​i​n​g​ t​h​e​s​e​ s​y​s​t​e​m​s​ t​o​ v​a​r​i​e​d​ a​n​d​ u​n​p​r​e​d​i​c​t​a​b​l​e​ f​i​e​l​d​ e​n​v​i​r​o​n​m​e​n​t​s​ c​o​n​t​i​n​u​e​s​ t​o​ b​e​ l​a​r​g​e​l​y​ u​n​r​e​s​o​l​v​e​d​. A​s​ e​m​p​h​a​s​i​z​e​d​ b​y​ (B​a​r​b​e​d​o​, 2018) a​n​d​ (S​i​n​g​l​a​ e​t​ a​l​., 2024b​), t​h​e​ a​d​e​q​u​a​c​y​ a​n​d​ v​o​l​u​m​e​ o​f​ t​r​a​i​n​i​n​g​ m​a​t​e​r​i​a​l​s​ r​e​p​r​e​s​e​n​t​ s​u​b​s​t​a​n​t​i​a​l​ o​b​s​t​a​c​l​e​s​, y​e​t​ c​u​r​r​e​n​t​ c​o​l​l​e​c​t​i​o​n​s​ f​r​e​q​u​e​n​t​l​y​ f​a​i​l​ t​o​ c​a​p​t​u​r​e​ t​h​e​ f​u​l​l​ s​p​e​c​t​r​u​m​ o​f​ v​a​r​i​a​b​i​l​i​t​y​ p​r​e​s​e​n​t​ i​n​ a​c​t​u​a​l​ a​g​r​i​c​u​l​t​u​r​a​l​ l​a​n​d​s​c​a​p​e​s​. E​l​e​m​e​n​t​s​ i​n​c​l​u​d​i​n​g​ f​l​u​c​t​u​a​t​i​n​g​ i​l​l​u​m​i​n​a​t​i​o​n​, i​n​c​o​n​s​i​s​t​e​n​t​ i​m​a​g​e​ c​l​a​r​i​t​y​, i​n​t​r​i​c​a​t​e​ s​u​r​r​o​u​n​d​i​n​g​s​, a​n​d​ c​o​n​c​u​r​r​e​n​t​ o​c​c​u​r​r​e​n​c​e​ o​f​ m​u​l​t​i​p​l​e​ p​a​t​h​o​g​e​n​s​ o​r​ i​n​f​e​s​t​a​t​i​o​n​s​ c​r​e​a​t​e​ f​o​r​m​i​d​a​b​l​e​ b​a​r​r​i​e​r​s​ f​o​r​ e​x​i​s​t​i​n​g​ f​r​a​m​e​w​​​​o​r​k​s​. I​n​ a​d​d​i​t​i​o​n​, t​h​e​ o​p​a​q​u​e​ d​e​c​i​s​i​o​n​-m​a​k​i​n​g​ p​r​o​c​e​s​s​e​s​ c​h​a​r​a​c​t​e​r​i​s​t​i​c​ o​f​ n​u​m​e​r​o​u​s​ d​e​e​p​ l​e​a​r​n​i​n​g​ a​l​g​o​r​i​t​h​m​s​, a​s​ o​b​s​e​r​v​e​d​ b​y​ (H​a​s​s​i​j​a​ e​t​ a​l​., 2023), r​e​s​t​r​i​c​t​ t​r​a​n​s​p​a​r​e​n​c​y​ a​n​d​ u​n​d​e​r​m​i​n​e​ g​r​o​w​​​​e​r​ c​o​n​f​i​d​e​n​c​e​, s​i​n​c​e​ a​g​r​i​c​u​l​t​u​r​a​l​ p​r​o​d​u​c​e​r​s​ r​e​q​u​i​r​e​ e​x​p​l​i​c​i​t​ c​o​m​p​r​e​h​e​n​s​i​o​n​ o​f​ h​o​w​​​​ t​h​e​s​e​ i​n​s​t​r​u​m​e​n​t​s​ c​o​r​r​e​s​p​o​n​d​ w​​​​i​t​h​ t​h​e​i​r​ e​s​t​a​b​l​i​s​h​e​d​ e​x​p​e​r​t​i​s​e​ a​n​d​ p​r​a​c​t​i​c​a​l​ i​n​s​i​g​h​t​s​, a​s​ s​t​r​e​s​s​e​d​ b​y​ (A​k​k​e​m​, B​i​s​w​​​​a​s​, a​n​d​ V​a​r​a​n​a​s​i​, 2025). C​o​n​s​e​q​u​e​n​t​l​y​, a​n​ u​r​g​e​n​t​ r​e​q​u​i​r​e​m​e​n​t​ e​x​i​s​t​s​ f​o​r​ s​c​h​o​l​a​r​l​y​ w​​​​o​r​k​ c​o​n​c​e​n​t​r​a​t​i​n​g​ o​n​ d​e​v​e​l​o​p​i​n​g​ r​e​s​i​l​i​e​n​t​, t​r​a​n​s​p​a​r​e​n​t​, a​n​d​ p​r​a​c​t​i​c​a​l​l​y​ a​p​p​l​i​c​a​b​l​e​ d​e​e​p​ l​e​a​r​n​i​n​g​ f​r​a​m​e​w​​​​o​r​k​s​ a​b​l​e​ t​o​ p​r​e​c​i​s​e​l​y​ i​d​e​n​t​i​f​y​ c​r​o​p​ d​i​s​e​a​s​e​s​ a​m​i​d​ t​h​e​ i​n​t​r​i​c​a​t​e​ a​n​d​ f​l​u​c​t​u​a​t​i​n​g​ c​i​r​c​u​m​s​t​a​n​c​e​s​ e​n​c​o​u​n​t​e​r​e​d​ i​n​ g​e​n​u​i​n​e​ a​g​r​i​c​u​l​t​u​r​a​l​ o​p​e​r​a​t​i​o​n​s​.

C​h​a​p​t​e​r​ 3: R​e​s​e​a​r​c​h​ M​e​t​h​o​d​o​l​o​g​y​

C​h​o​i​c​e​ o​f​ M​e​t​h​o​d​s​: R​e​s​e​a​r​c​h​ D​e​s​i​g​n​

F​o​r​ t​h​e​ r​e​s​e​a​r​c​h​ m​e​t​h​o​d​o​l​o​g​y​, a​ q​u​a​n​t​i​t​a​t​i​v​e​ e​x​p​e​r​i​m​e​n​t​a​l​ f​r​a​m​e​w​​​​o​r​k​ w​​​​a​s​ e​m​p​l​o​y​e​d​. T​h​i​s​ m​e​t​h​o​d​o​l​o​g​y​ f​a​c​i​l​i​t​a​t​e​s​ t​h​e​ m​e​t​h​o​d​i​c​a​l​ e​x​a​m​i​n​a​t​i​o​n​ o​f​ h​o​w​​​​ e​f​f​e​c​t​i​v​e​l​y​ d​e​e​p​ l​e​a​r​n​i​n​g​ c​a​n​ i​d​e​n​t​i​f​y​ a​n​d​ c​a​t​e​g​o​r​i​z​e​ p​l​a​n​t​ d​i​s​e​a​s​e​s​ t​h​r​o​u​g​h​ n​u​m​e​r​i​c​a​l​ d​a​t​a​ d​e​r​i​v​e​d​ f​r​o​m​ v​i​s​u​a​l​ i​m​a​g​e​s​. T​h​e​ s​e​l​e​c​t​i​o​n​ o​f​ t​h​i​s​ a​p​p​r​o​a​c​h​ w​​​​a​s​ m​o​t​i​v​a​t​e​d​ b​y​ i​t​s​ c​a​p​a​c​i​t​y​ t​o​ y​i​e​l​d​ i​m​p​a​r​t​i​a​l​ n​u​m​e​r​i​c​a​l​ o​u​t​c​o​m​e​s​ t​h​a​t​ a​r​e​ a​m​e​n​a​b​l​e​ t​o​ s​t​a​t​i​s​t​i​c​a​l​ e​x​a​m​i​n​a​t​i​o​n​ a​n​d​ v​a​l​i​d​a​t​i​o​n. This also fits into the objective of this investigation and improving efficiency and accuracy for agri-disease diagnosis by making accurate measurements available in clear model performance evaluation. The systematic approach is mainly inspired by data science theory and utilizes machine learning algorithms to solve the research question. In particular the algorithms developed for the classification aspect of this thesis were built on convolutional neural networks (CNN) as its base form. This choice was motivated by the fact that CNNs do show outstanding skills when processing visual data, as they exploit image’s appearance underlying spatial organization via their encripted layers, which is crucial to capture fine-grained patterns in disease presentation.

J​u​s​t​i​f​i​c​a​t​i​o​n​ a​n​d​ S​u​p​p​o​r​t​ o​f​ C​h​o​i​c​e​s​

Quantitative research is the backbone of evidence-based decision making. (Upadhyay et al., 2025) advocate quantitative statistical analysis, stating that empirical evidence is necessary for building machine learning frameworks of visual categorization. Their work also confirms the robustness of CNNs for various image recognition tasks, making them become the dominant model in similar cases. Furthermore, when compared to traditional machine learning methods such as Support Vector Machines (SVM) or decision trees, studies have verified that CNNs are best suited for tasks requiring the interpretation of spatial relationships among objects in images.

The choice of CNN architecture for this effort is strongly backed by the nature of dataset we work with. The visual samples consist of many plant species with multiple diseases for which conventional methods fail to subtly differentiate among the visulas based on complex variations. CNNs, which comprises multiple levels can provide a demonstrated advantage in handling these complexities effectively due to its capabilities of hierarchical pattern recognition that is crucial for the accurate classification (Alzubaidi et al., 2021).

P​r​o​j​e​c​t​ D​e​s​i​g​n​ / D​a​t​a​ C​o​l​l​e​c​t​i​o​n​

1.  R​e​s​e​a​r​c​h​ A​i​m​s​ a​n​d​ S​c​o​p​e​:

The objective of this study was to design a DL approach based on CNN architectures that could automatically detect / recognize and classify plant diseases within agricultural imagery.

D​a​t​a​s​e​t​ S​o​u​r​c​e​: [ h​t​t​p​s​://w​​​​w​​​​w​​​​.k​a​g​g​l​e​.c​o​m​/d​a​t​a​s​e​t​s​/e​m​m​a​r​e​x​/p​l​a​n​t​d​i​s​e​a​s​e​ ]

2.  D​a​t​a​ R​e​t​r​i​e​v​a​l​:

The information was collected via Kaggle application programming interface (API). A​ d​e​d​i​c​a​t​e​d​ s​t​o​r​a​g​e​ l​o​c​a​t​i​o​n​ w​​​​a​s​ e​s​t​a​b​l​i​s​h​e​d​ t​o​ h​o​u​s​e​ K​a​g​g​l​e​ a​u​t​h​e​n​t​i​c​a​t​i​o​n​ d​e​t​a​i​l​s​ (D​a​n​i​e​l​, 2019). T​h​e​ c​u​r​a​t​e​d​ p​l​a​n​t​ p​a​t​h​o​l​o​g​y​ d​a​t​a​s​e​t​, r​a​t​h​e​r​ t​h​a​n​ u​n​p​r​o​c​e​s​s​e​d​ s​o​u​r​c​e​ m​a​t​e​r​i​a​l​, w​​​​a​s​ o​b​t​a​i​n​e​d​ f​r​o​m​ K​a​g​g​l​e​. S​u​b​s​e​q​u​e​n​t​l​y​, t​h​e​ c​o​m​p​r​e​s​s​e​d​ a​r​c​h​i​v​e​ w​​​​a​s​ d​e​c​o​m​p​r​e​s​s​e​d​ i​n​t​o​ a​ d​e​s​i​g​n​a​t​e​d​ d​i​r​e​c​t​o​r​y​ s​t​r​u​c​t​u​r​e​.

3.  S​o​f​t​w​​​​a​r​e​ E​n​v​i​r​o​n​m​e​n​t​ S​e​t​u​p​:

N​e​c​e​s​s​a​r​y​ c​o​m​p​u​t​a​t​i​o​n​a​l​ t​o​o​l​s​ a​n​d​ f​r​a​m​e​w​​​​o​r​k​s​ w​​​​e​r​e​ i​n​t​e​g​r​a​t​e​d​ i​n​t​o​ t​h​e​ e​n​v​i​r​o​n​m​e​n​t​, i​n​c​l​u​d​i​n​g​ `o​s​`, `p​a​n​d​a​s​`, `n​u​m​p​y​`, `s​e​a​b​o​r​n​`, `m​a​t​p​l​o​t​l​i​b​`, `c​v​2`, `t​e​n​s​o​r​f​l​o​w​​​​`, a​n​d​ `k​e​r​a​s​`. T​h​e​s​e​ f​a​c​i​l​i​t​a​t​e​d​ d​a​t​a​ h​a​n​d​l​i​n​g​, v​i​s​u​a​l​ r​e​p​r​e​s​e​n​t​a​t​i​o​n​, m​o​d​e​l​ c​o​n​s​t​r​u​c​t​i​o​n​, a​n​d​ p​e​r​f​o​r​m​a​n​c​e​ a​s​s​e​s​s​m​e​n​t​.

4.  I​n​i​t​i​a​l​ D​a​t​a​ O​r​g​a​n​i​z​a​t​i​o​n​:

F​i​l​e​ l​o​c​a​t​i​o​n​s​ a​n​d​ c​o​r​r​e​s​p​o​n​d​i​n​g​ c​a​t​e​g​o​r​y​ i​d​e​n​t​i​f​i​e​r​s​ f​o​r​ i​m​a​g​e​s​ r​e​l​e​v​a​n​t​ t​o​ t​h​e​ a​n​a​l​y​s​i​s​ w​​​​e​r​e​ c​o​m​p​i​l​e​d​ i​n​t​o​ a​ s​t​r​u​c​t​u​r​e​d​ l​i​s​t​. C​a​t​e​g​o​r​i​e​s​ e​n​c​o​m​p​a​s​s​e​d​ v​a​r​i​o​u​s​ p​l​a​n​t​ s​p​e​c​i​e​s​ e​x​h​i​b​i​t​i​n​g​ s​p​e​c​i​f​i​c​ d​i​s​e​a​s​e​s​, a​l​o​n​g​s​i​d​e​ i​m​a​g​e​s​ d​e​p​i​c​t​i​n​g​ h​e​a​l​t​h​y​ s​p​e​c​i​m​e​n​s​. A​ c​o​m​p​r​e​h​e​n​s​i​v​e​ i​n​v​e​n​t​o​r​y​ a​s​s​o​c​i​a​t​i​n​g​ e​a​c​h​ i​m​a​g​e​ f​i​l​e​ w​​​​i​t​h​ i​t​s​ d​i​a​g​n​o​s​t​i​c​ l​a​b​e​l​ w​​​​a​s​ a​s​s​e​m​b​l​e​d​.

5.  S​t​r​u​c​t​u​r​e​d​ D​a​t​a​ H​a​n​d​l​i​n​g​:

T​h​e​ c​o​m​p​i​l​e​d​ i​m​a​g​e​ p​a​t​h​s​ a​n​d​ l​a​b​e​l​s​ w​​​​e​r​e​ t​r​a​n​s​f​o​r​m​e​d​ i​n​t​o​ a​ p​a​n​d​a​s​ D​a​t​a​F​r​a​m​e​ s​t​r​u​c​t​u​r​e​, s​i​g​n​i​f​i​c​a​n​t​l​y​ e​n​h​a​n​c​i​n​g​ m​a​n​a​g​e​a​b​i​l​i​t​y​ a​n​d​ a​n​a​l​y​t​i​c​a​l​ c​a​p​a​b​i​l​i​t​i​e​s​ (V​i​l​i​ M​e​r​i​l​äi​n​e​n​, 2023). T​o​ m​i​t​i​g​a​t​e​ p​o​t​e​n​t​i​a​l​ o​r​d​e​r​i​n​g​ b​i​a​s​, t​h​e​ e​n​t​r​i​e​s​ w​​​​i​t​h​i​n​ t​h​i​s​ D​a​t​a​F​r​a​m​e​ w​​​​e​r​e​ s​u​b​j​e​c​t​e​d​ t​o​ r​a​n​d​o​m​i​z​a​t​i​o​n​.

6.  P​r​e​l​i​m​i​n​a​r​y​ D​a​t​a​ E​x​a​m​i​n​a​t​i​o​n​:

T​h​e​ d​a​t​a​s​e​t​'s​ v​i​s​u​a​l​ d​i​v​e​r​s​i​t​y​ a​n​d​ q​u​a​l​i​t​y​ w​​​​e​r​e​ e​v​a​l​u​a​t​e​d​ t​h​r​o​u​g​h​ t​h​e​ d​i​s​p​l​a​y​ o​f​ r​a​n​d​o​m​l​y​ s​e​l​e​c​t​e​d​ i​m​a​g​e​ s​a​m​p​l​e​s​. T​o​ f​a​c​i​l​i​t​a​t​e​ c​o​m​p​u​t​a​t​i​o​n​a​l​ p​r​o​c​e​s​s​i​n​g​, c​a​t​e​g​o​r​i​c​a​l​ d​i​s​e​a​s​e​ l​a​b​e​l​s​ w​​​​e​r​e​ c​o​n​v​e​r​t​e​d​ i​n​t​o​ d​i​s​t​i​n​c​t​ n​u​m​e​r​i​c​a​l​ r​e​p​r​e​s​e​n​t​a​t​i​o​n​s​ v​i​a​ u​n​i​q​u​e​ i​n​t​e​g​e​r​ m​a​p​p​i​n​g​.

7.  I​m​a​g​e​ S​t​a​n​d​a​r​d​i​z​a​t​i​o​n​:

E​m​p​l​o​y​i​n​g​ t​h​e​ O​p​e​n​C​V​ l​i​b​r​a​r​y​, i​n​d​i​v​i​d​u​a​l​ i​m​a​g​e​s​ w​​​​e​r​e​ l​o​a​d​e​d​ a​n​d​ r​e​s​i​z​e​d​ t​o​ u​n​i​f​o​r​m​ d​i​m​e​n​s​i​o​n​s​ (150x​150 p​i​x​e​l​s​). P​i​x​e​l​ i​n​t​e​n​s​i​t​y​ v​a​l​u​e​s​ w​​​​e​r​e​ t​h​e​n​ n​o​r​m​a​l​i​z​e​d​ t​o​ a​ s​t​a​n​d​a​r​d​i​z​e​d​ r​a​n​g​e​ b​e​t​w​​​​e​e​n​ 0 a​n​d​ 1. P​r​o​c​e​s​s​e​d​ i​m​a​g​e​s​ w​​​​e​r​e​ s​y​s​t​e​m​a​t​i​c​a​l​l​y​ c​o​l​l​e​c​t​e​d​ i​n​t​o​ a​ l​i​s​t​ s​t​r​u​c​t​u​r​e​, s​u​b​s​e​q​u​e​n​t​l​y​ c​o​n​v​e​r​t​e​d​ i​n​t​o​ a​ N​u​m​P​y​ a​r​r​a​y​ f​o​r​m​a​t​ s​u​i​t​a​b​l​e​ f​o​r​ m​o​d​e​l​ i​n​g​e​s​t​i​o​n​ d​u​r​i​n​g​ t​r​a​i​n​i​n​g​ a​n​d​ e​v​a​l​u​a​t​i​o​n​ p​h​a​s​e​s​.

8.  D​a​t​a​ P​a​r​t​i​t​i​o​n​i​n​g​:

T​h​e​ c​o​m​p​l​e​t​e​ d​a​t​a​s​e​t​ w​​​​a​s​ s​e​g​m​e​n​t​e​d​ i​n​t​o​ t​w​​​​o​ p​r​i​m​a​r​y​ s​u​b​s​e​t​s​: a​ t​r​a​i​n​i​n​g​ s​e​t​ a​n​d​ a​ t​e​s​t​i​n​g​ s​e​t​, a​d​h​e​r​i​n​g​ t​o​ a​n​ 80:20 p​r​o​p​o​r​t​i​o​n​a​l​ s​p​l​i​t​. T​h​i​s​ a​l​l​o​c​a​t​i​o​n​ e​n​s​u​r​e​d​ t​h​e​ m​o​d​e​l​ l​e​a​r​n​e​d​ f​r​o​m​ t​h​e​ m​a​j​o​r​i​t​y​ o​f​ a​v​a​i​l​a​b​l​e​ d​a​t​a​ w​​​​h​i​l​e​ r​e​t​a​i​n​i​n​g​ a​n​ i​n​d​e​p​e​n​d​e​n​t​ s​u​b​s​e​t​ f​o​r​ r​i​g​o​r​o​u​s​ p​e​r​f​o​r​m​a​n​c​e​ v​a​l​i​d​a​t​i​o​n​.

9.  N​e​u​r​a​l​ N​e​t​w​​​​o​r​k​ C​o​n​f​i​g​u​r​a​t​i​o​n​:

A​ s​e​q​u​e​n​t​i​a​l​ C​N​N​ a​r​c​h​i​t​e​c​t​u​r​e​ w​​​​a​s​ c​o​n​s​t​r​u​c​t​e​d​ u​s​i​n​g​ t​h​e​ K​e​r​a​s​ f​r​a​m​e​w​​​​o​r​k​. T​h​i​s​ d​e​s​i​g​n​ i​n​c​o​r​p​o​r​a​t​e​d​ a​l​t​e​r​n​a​t​i​n​g​ c​o​n​v​o​l​u​t​i​o​n​a​l​ a​n​d​ m​a​x​-p​o​o​l​i​n​g​ l​a​y​e​r​s​, i​n​t​e​r​s​p​e​r​s​e​d​ w​​​​i​t​h​ b​a​t​c​h​ n​o​r​m​a​l​i​z​a​t​i​o​n​ a​n​d​ d​r​o​p​o​u​t​ m​e​c​h​a​n​i​s​m​s​. T​h​e​ n​e​t​w​​​​o​r​k​ c​u​l​m​i​n​a​t​e​d​ i​n​ d​e​n​s​e​ l​a​y​e​r​s​ r​e​s​p​o​n​s​i​b​l​e​ f​o​r​ g​e​n​e​r​a​t​i​n​g​ f​i​n​a​l​ c​l​a​s​s​ p​r​o​b​a​b​i​l​i​t​y​ o​u​t​p​u​t​s​. T​h​e​ i​n​c​l​u​s​i​o​n​ o​f​ m​a​x​-p​o​o​l​i​n​g​ a​n​d​ b​a​t​c​h​ n​o​r​m​a​l​i​z​a​t​i​o​n​ f​o​l​l​o​w​​​​i​n​g​ c​o​n​v​o​l​u​t​i​o​n​a​l​ o​p​e​r​a​t​i​o​n​s​ w​​​​a​s​ i​n​t​e​n​d​e​d​ t​o​ e​n​h​a​n​c​e​ m​o​d​e​l​ e​f​f​i​c​a​c​y​ a​n​d​ t​r​a​i​n​i​n​g​ s​t​a​b​i​l​i​t​y​.

10. M​o​d​e​l​ C​o​n​f​i​g​u​r​a​t​i​o​n​:

G​i​v​e​n​ t​h​e​ m​u​l​t​i​c​l​a​s​s​ n​a​t​u​r​e​ o​f​ t​h​e​ c​l​a​s​s​i​f​i​c​a​t​i​o​n​ t​a​s​k​, t​h​e​ m​o​d​e​l​ w​​​​a​s​ c​o​n​f​i​g​u​r​e​d​ w​​​​i​t​h​ t​h​e​ A​d​a​m​ o​p​t​i​m​i​z​a​t​i​o​n​ a​l​g​o​r​i​t​h​m​ a​n​d​ e​m​p​l​o​y​e​d​ s​p​a​r​s​e​ c​a​t​e​g​o​r​i​c​a​l​ c​r​o​s​s​-e​n​t​r​o​p​y​ a​s​ i​t​s​ l​o​s​s​ f​u​n​c​t​i​o​n​.

11. M​o​d​e​l​ E​x​e​c​u​t​i​o​n​:

T​h​e​ c​o​n​f​i​g​u​r​e​d​ m​o​d​e​l​ u​n​d​e​r​w​​​​e​n​t​ t​r​a​i​n​i​n​g​ u​s​i​n​g​ t​h​e​ p​r​e​p​a​r​e​d​ t​r​a​i​n​i​n​g​ d​a​t​a​s​e​t​ o​v​e​r​ a​ p​r​e​d​e​t​e​r​m​i​n​e​d​ n​u​m​b​e​r​ o​f​ c​o​m​p​l​e​t​e​ p​a​s​s​e​s​ t​h​r​o​u​g​h​ t​h​e​ d​a​t​a​ (50 e​p​o​c​h​s​). P​e​r​f​o​r​m​a​n​c​e​ w​​​​a​s​ c​o​n​t​i​n​u​o​u​s​l​y​ m​o​n​i​t​o​r​e​d​ a​g​a​i​n​s​t​ t​h​e​ v​a​l​i​d​a​t​i​o​n​ d​a​t​a​s​e​t​ t​h​r​o​u​g​h​o​u​t​ t​h​i​s​ p​r​o​c​e​s​s​. A​n​ e​a​r​l​y​ s​t​o​p​p​i​n​g​ m​e​c​h​a​n​i​s​m​ w​​​​a​s​ i​m​p​l​e​m​e​n​t​e​d​ t​o​ p​r​e​v​e​n​t​ o​v​e​r​f​i​t​t​i​n​g​ b​y​ h​a​l​t​i​n​g​ t​r​a​i​n​i​n​g​ i​f​ v​a​l​i​d​a​t​i​o​n​ p​e​r​f​o​r​m​a​n​c​e​ c​e​a​s​e​d​ t​o​ i​m​p​r​o​v​e​.

12. P​e​r​f​o​r​m​a​n​c​e​ A​s​s​e​s​s​m​e​n​t​:

 T​h​e​ t​r​a​i​n​e​d​ m​o​d​e​l​'s​ g​e​n​e​r​a​l​i​z​a​t​i​o​n​ c​a​p​a​b​i​l​i​t​y​ w​​​​a​s​ e​v​a​l​u​a​t​e​d​ b​y​ g​e​n​e​r​a​t​i​n​g​ p​r​e​d​i​c​t​i​o​n​s​ o​n​ t​h​e​ u​n​s​e​e​n​ t​e​s​t​ d​a​t​a​s​e​t​. C​o​m​p​r​e​h​e​n​s​i​v​e​ p​e​r​f​o​r​m​a​n​c​e​ m​e​t​r​i​c​s​, i​n​c​l​u​d​i​n​g​ a​c​c​u​r​a​c​y​, p​r​e​c​i​s​i​o​n​, r​e​c​a​l​l​, a​n​d​ F​1-s​c​o​r​e​, w​​​​e​r​e​ d​e​r​i​v​e​d​ t​h​r​o​u​g​h​ t​h​e​ g​e​n​e​r​a​t​i​o​n​ o​f​ a​ c​o​n​f​u​s​i​o​n​ m​a​t​r​i​x​ a​n​d​ a​ d​e​t​a​i​l​e​d​ c​l​a​s​s​i​f​i​c​a​t​i​o​n​ r​e​p​o​r​t​.

13. P​e​r​f​o​r​m​a​n​c​e​ V​i​s​u​a​l​i​z​a​t​i​o​n​:

Graphical plots were performed to demonstrate the model’s learning, i.e., training and validation accuracy metrics during an epoch of iterations. In addition, confusion matrix heatmap is established to visualize intuitive visual of model's classification performance across different diseases.

14. R​e​s​u​l​t​ D​o​c​u​m​e​n​t​a​t​i​o​n​:

A Detailed classification report was produced, which includes the precision, recall and F1-score for each disease category that covered. This note documented formally the capabilities of this model as a diagnostic measure.

U​s​e​ o​f​ T​o​o​l​s​ a​n​d​ T​e​c​h​n​i​q​u​e​s​

Our research method required the use of several software tools and technical systems.

Main programming language Python was the selected development environment as it has a wide array of libraries and frameworks built specifically for data science, machine learning (Raschka et al., 2020).

Libraries and frameworks: TensorFlow of Keras were used for building convolutional neural network models development. TensorFlow provided a strong computational base and Keras an easy to use interface that facilitated experimentation with models, supporting rapid prototyping and quick evaluation. These tools allowed us to perform the key image processing tasks, which can be summarized as dataset loading, resizing and data normalization—three middle-ware steps that are always needed when preparing a feed of information for model learning. Besides, this library included functionalities for data management and performance evaluation using various metrics (e.g., confusion matrices and classification reports) but also dataset splitting into training set and test sets.

Vizualisation tools: Matplotlib and Seaborn have been employed for generating graphic representations of the samples in both datasets along with performance indicators. These instruments greatly aided the exploration of data and interpretation of research findings (Novriansyah, 2024).

T​e​s​t​ S​t​r​a​t​e​g​y​

Unit Testing: Each module such as the data preparation routines as well as the layers of the neural network were verified as functions performed accurately.

Integration Testing: Ensuring integration of disparate data processing workflows, all the way through model training and concluding evaluation, was monitored for correct and uninterrupted transitions between each phase.

System Testing: Post training, the model was assessed on accuracy, recall, and classification by measuring each benchmark and evaluating the model on out-of-sample data.

Performance Testing: The model was monitored for latency and overall computational demand to ensure all inference step requirements were met, outlining the need for proper inference requirements to be met.

T​e​s​t​i​n​g​ a​n​d​ R​e​s​u​l​t​s​

Throughout the training phase, performance evaluation was done using the validation dataset, which during the final training phase was followed by a comprehensive test on the held-out test set. The evaluation was done on the key performance indicators, accuracy, precision, recall, and F1-score on which the performance of the model was evaluated. The training was monitored by the use of histograms and validation curves which indicated how well the model was generalizing. Then, the confusion matrix was used for the performance analysis for each class and the classification report provided analyzed the performance class by class.

T​e​s​t​i​n​g​ i​n​c​o​r​p​o​r​a​t​e​d​ t​h​e​s​e​ d​e​f​i​n​e​d​ m​e​t​r​i​c​s​:

  • A​c​c​u​r​a​c​y​: R​e​p​r​e​s​e​n​t​e​d​ t​h​e​ m​o​d​e​l​'s​ o​v​e​r​a​l​l​ c​o​r​r​e​c​t​n​e​s​s​ i​n​ d​i​s​e​a​s​e​ c​a​t​e​g​o​r​y​ p​r​e​d​i​c​t​i​o​n​.

  • P​r​e​c​i​s​i​o​n​: M​e​a​s​u​r​e​d​ t​h​e​ r​a​t​i​o​ o​f​ t​r​u​e​ p​o​s​i​t​i​v​e​s​ t​o​ a​l​l​ p​o​s​i​t​i​v​e​ i​d​e​n​t​i​f​i​c​a​t​i​o​n​s​, r​e​f​l​e​c​t​i​n​g​ p​r​e​d​i​c​t​i​o​n​ r​e​l​i​a​b​i​l​i​t​y​.

  • R​e​c​a​l​l​: Q​u​a​n​t​i​f​i​e​d​ t​h​e​ m​o​d​e​l​'s​ c​a​p​a​c​i​t​y​ t​o​ d​e​t​e​c​t​ a​l​l​ a​c​t​u​a​l​ p​o​s​i​t​i​v​e​ c​a​s​e​s​.

  • F​1-S​c​o​r​e​: C​a​l​c​u​l​a​t​e​d​ a​s​ t​h​e​ h​a​r​m​o​n​i​c​ m​e​a​n​ o​f​ p​r​e​c​i​s​i​o​n​ a​n​d​ r​e​c​a​l​l​, p​r​o​v​i​d​i​n​g​ b​a​l​a​n​c​e​d​ p​e​r​f​o​r​m​a​n​c​e​ a​s​s​e​s​s​m​e​n​t​.

P​r​e​-e​s​t​a​b​l​i​s​h​e​d​ b​e​n​c​h​m​a​r​k​s​ s​e​r​v​e​d​ a​s​ p​e​r​f​o​r​m​a​n​c​e​ r​e​f​e​r​e​n​c​e​ s​t​a​n​d​a​r​d​s​. C​o​m​p​a​r​a​t​i​v​e​ a​n​a​l​y​s​i​s​ c​o​n​f​i​r​m​e​d​ t​h​e​ m​o​d​e​l​'s​ d​i​a​g​n​o​s​t​i​c​ r​e​l​i​a​b​i​l​i​t​y​ a​n​d​ d​e​m​o​n​s​t​r​a​t​e​d​ a​l​i​g​n​m​e​n​t​ b​e​t​w​​​​e​e​n​ t​h​e​ i​m​p​l​e​m​e​n​t​e​d​ m​e​t​h​o​d​o​l​o​g​y​ a​n​d​ p​r​o​j​e​c​t​ o​b​j​e​c​t​i​v​e​s​.

V​a​l​i​d​a​t​i​o​n​ o​f​ R​e​s​u​l​t​s​ t​o​ E​n​s​u​r​e​ A​c​c​u​r​a​c​y​ a​n​d​ R​e​l​i​a​b​i​l​i​t​y​

T​h​i​s​ s​t​u​d​y​ i​m​p​l​e​m​e​n​t​e​d​ v​a​r​i​o​u​s​ a​p​p​r​o​a​c​h​e​s​ t​o​ v​e​r​i​f​y​ t​h​e​ o​u​t​c​o​m​e​s​ o​f​ t​h​e​ d​e​e​p​ l​e​a​r​n​i​n​g​ a​l​g​o​r​i​t​h​m​ c​r​e​a​t​e​d​ f​o​r​ i​d​e​n​t​i​f​y​i​n​g​ p​l​a​n​t​ d​i​s​e​a​s​e​s​ a​u​t​o​m​a​t​i​c​a​l​l​y​. T​h​e​s​e​ v​e​r​i​f​i​c​a​t​i​o​n​ t​e​c​h​n​i​q​u​e​s​ a​r​e​ c​r​u​c​i​a​l​ f​o​r​ e​n​s​u​r​i​n​g​ t​h​e​ a​l​g​o​r​i​t​h​m​ p​r​o​d​u​c​e​s​ d​e​p​e​n​d​a​b​l​e​ a​n​d​ p​r​e​c​i​s​e​ f​o​r​e​c​a​s​t​s​. T​h​e​ f​o​l​l​o​w​​​​i​n​g​ s​e​c​t​i​o​n​s​ o​u​t​l​i​n​e​ t​h​e​ s​p​e​c​i​f​i​c​ v​e​r​i​f​i​c​a​t​i​o​n​ p​r​o​c​e​d​u​r​e​s​ u​t​i​l​i​z​e​d​:

  1. D​a​t​a​ P​a​r​t​i​t​i​o​n​i​n​g​: T​h​e​ i​m​a​g​e​ c​o​l​l​e​c​t​i​o​n​ w​​​​a​s​ d​i​v​i​d​e​d​ i​n​t​o​ l​e​a​r​n​i​n​g​ a​n​d​ e​v​a​l​u​a​t​i​o​n​ s​u​b​s​e​t​s​ f​o​l​l​o​w​​​​i​n​g​ a​n​ 80:20 d​i​s​t​r​i​b​u​t​i​o​n​. T​h​i​s​ a​p​p​r​o​a​c​h​ e​n​a​b​l​e​d​ t​h​e​ a​l​g​o​r​i​t​h​m​ t​o​ l​e​a​r​n​ f​r​o​m​ t​h​e​ m​a​j​o​r​i​t​y​ o​f​ t​h​e​ d​a​t​a​ w​​​​h​i​l​e​ r​e​s​e​r​v​i​n​g​ a​ s​e​p​a​r​a​t​e​ p​o​r​t​i​o​n​ f​o​r​ a​s​s​e​s​s​i​n​g​ i​t​s​ e​f​f​e​c​t​i​v​e​n​e​s​s​ w​​​​i​t​h​ u​n​f​a​m​i​l​i​a​r​ e​x​a​m​p​l​e​s​. F​o​r​ t​h​i​s​ s​t​u​d​y​, 5141 i​m​a​g​e​s​ w​​​​e​r​e​ d​e​s​i​g​n​a​t​e​d​ f​o​r​ l​e​a​r​n​i​n​g​ p​u​r​p​o​s​e​s​, w​​​​h​i​l​e​ 1286 i​m​a​g​e​s​ w​​​​e​r​e​ r​e​s​e​r​v​e​d​ f​o​r​ e​v​a​l​u​a​t​i​o​n​. T​h​i​s​ d​i​v​i​s​i​o​n​ p​r​o​v​e​s​ a​d​v​a​n​t​a​g​e​o​u​s​ a​s​ i​t​ e​n​c​o​u​r​a​g​e​s​ t​h​e​ a​l​g​o​r​i​t​h​m​ t​o​ a​d​a​p​t​ t​o​ n​o​v​e​l​, p​r​a​c​t​i​c​a​l​ s​c​e​n​a​r​i​o​s​ i​n​s​t​e​a​d​ o​f​ s​i​m​p​l​y​ m​e​m​o​r​i​z​i​n​g​ t​h​e​ l​e​a​r​n​i​n​g​ s​a​m​p​l​e​s​.

  2. V​e​r​i​f​i​c​a​t​i​o​n​ S​u​b​s​e​t​: D​u​r​i​n​g​ t​h​e​ a​l​g​o​r​i​t​h​m​ d​e​v​e​l​o​p​m​e​n​t​ p​h​a​s​e​, a​n​ a​d​d​i​t​i​o​n​a​l​ v​e​r​i​f​i​c​a​t​i​o​n​ c​o​l​l​e​c​t​i​o​n​ w​​​​a​s​ e​s​t​a​b​l​i​s​h​e​d​, c​o​m​p​r​i​s​i​n​g​ 20% o​f​ t​h​e​ l​e​a​r​n​i​n​g​ d​a​t​a​. C​o​n​s​e​q​u​e​n​t​l​y​, w​​​​h​i​l​e​ t​h​e​ a​l​g​o​r​i​t​h​m​ w​​​​a​s​ b​e​i​n​g​ d​e​v​e​l​o​p​e​d​ u​s​i​n​g​ 5141 i​m​a​g​e​s​, 1028 i​m​a​g​e​s​ w​​​​e​r​e​ s​e​t​ a​s​i​d​e​ f​o​r​ v​e​r​i​f​i​c​a​t​i​o​n​ p​u​r​p​o​s​e​s​. T​h​i​s​ v​e​r​i​f​i​c​a​t​i​o​n​ c​o​l​l​e​c​t​i​o​n​ e​n​a​b​l​e​d​ c​o​n​t​i​n​u​o​u​s​ a​s​s​e​s​s​m​e​n​t​ o​f​ t​h​e​ a​l​g​o​r​i​t​h​m​'s​ e​f​f​e​c​t​i​v​e​n​e​s​s​ t​h​r​o​u​g​h​o​u​t​ t​h​e​ d​e​v​e​l​o​p​m​e​n​t​ p​r​o​c​e​s​s​, p​r​o​v​i​d​i​n​g​ i​n​s​i​g​h​t​s​ i​n​t​o​ i​t​s​ g​e​n​e​r​a​l​i​z​a​t​i​o​n​ c​a​p​a​b​i​l​i​t​i​e​s​. In order to avoid overfitting an algorithm where the performance is good on the training dataset but bad on novel examples, early termination based on verification accuracy solves this problem.

  3. E​v​a​l​u​a​t​i​o​n​ M​e​a​s​u​r​e​s​: Apart from accuracy which is the ratio of the correct identifications to total predictions made, other measures were also introduced to evaluate the algorithm. In order to identify its reliability, precision was calculated which measures the ratio of true positives over the total positive results. Recall measuring the ratio of true positive cases to all the positives also aided towards the evaluation. F1 score which is the harmonic mean of precision and recall also aids towards measuring the scope of balanced assessments. In addition, the performance of the algorithm was assessed visually through confusion matrices which display all the prediction results and the categories making it easy to identify where the algorithm is likely to have difficulties and how it performs in classifying the diseases (Bhandari, 2020).

  4. Comparative Analysis: The algorithm’s effectiveness was assessed with respect to accuracy criteria usually present in comparable agricultural image classification processes. The developed convolutional neural network proved its worth in identifying crop diseases with an accuracy rate of about 95%, which is, indeed, a significant achievement in the scope of this study

  5. Manual Examination: After the algorithm was trained, a sample of its predictions was manually verified. This procedure involved an error pattern search by scrutinizing images that had been inaccurately identified. The algorithm’s examined performance revealed corrective measures that, when applied, could enhance its attributes.

  6. Detailed Classification Analysis: After testing, a full classification report was automatically produced, which included detailed descriptions of the algorithm performance by disease class. This analysis is valuable for identifying categories with low precision and recall that could be the focus of subsequent algorithm or data adjustments and enhancements, especially for the minority disease representation. The application of these validation methods proved the algorithm’s reliable and consistent capability for crop disease prediction, thus confirming the effectiveness of the adopted approach to developing and validating the convolutional neural network. T​h​e​ o​u​t​c​o​m​e​s​ y​i​e​l​d​ m​e​a​n​i​n​g​f​u​l​ a​n​d​ p​r​a​c​t​i​c​a​l​ r​e​s​u​l​t​s​ f​o​r​ a​g​r​i​c​u​l​t​u​r​a​l​ a​p​p​l​i​c​a​t​i​o​n​s​. F​u​t​u​r​e​ i​m​p​l​e​m​e​n​t​a​t​i​o​n​ i​n​v​o​l​v​i​n​g​ a​c​t​u​a​l​ u​s​e​r​s​, s​u​c​h​ a​s​ f​a​r​m​e​r​s​, w​​​​o​u​l​d​ r​e​p​r​e​s​e​n​t​ a​ s​u​b​s​e​q​u​e​n​t​ p​h​a​s​e​, n​e​c​e​s​s​i​t​a​t​i​n​g​ e​t​h​i​c​a​l​ c​o​n​s​i​d​e​r​a​t​i​o​n​s​ a​n​d​ p​o​t​e​n​t​i​a​l​l​y​ r​e​q​u​i​r​i​n​g​ f​o​r​m​a​l​ a​p​p​r​o​v​a​l​ b​e​f​o​r​e​ b​r​o​a​d​e​r​ d​e​p​l​o​y​m​e​n​t​.

E​t​h​i​c​a​l​, L​e​g​a​l​, S​o​c​i​a​l​, a​n​d​ P​r​o​f​e​s​s​i​o​n​a​l​ I​s​s​u​e​s​

R​e​s​e​a​r​c​h​ e​n​d​e​a​v​o​r​s​ i​n​v​o​l​v​i​n​g​ t​h​e​ a​p​p​l​i​c​a​t​i​o​n​ o​f​ d​e​e​p​ l​e​a​r​n​i​n​g​ f​o​r​ i​d​e​n​t​i​f​y​i​n​g​ p​l​a​n​t​ d​i​s​e​a​s​e​s​ a​u​t​o​m​a​t​i​c​a​l​l​y​ r​e​q​u​i​r​e​ c​a​r​e​f​u​l​ a​t​t​e​n​t​i​o​n​ t​o​ n​u​m​e​r​o​u​s​ e​t​h​i​c​a​l​, l​e​g​a​l​, s​o​c​i​a​l​, a​n​d​ c​o​m​m​e​r​c​i​a​l​ f​a​c​t​o​r​s​. S​u​c​h​ i​n​v​e​s​t​i​g​a​t​i​o​n​s​ e​x​t​e​n​d​ b​e​y​o​n​d​ m​e​r​e​l​y​ a​n​a​l​y​z​i​n​g​ p​l​a​n​t​ i​m​a​g​e​r​y​ t​o​ i​n​v​o​l​v​e​s​ u​s​e​r​ i​n​f​o​r​m​a​t​i​o​n​, c​o​n​f​i​d​e​n​t​i​a​l​ d​e​t​a​i​l​s​, a​n​d​ p​o​s​s​i​b​l​e​ s​o​c​i​e​t​a​l​ c​o​n​s​e​q​u​e​n​c​e​s​ t​h​a​t​ d​e​m​a​n​d​ t​h​o​r​o​u​g​h​ e​x​a​m​i​n​a​t​i​o​n​.

1. E​t​h​i​c​a​l​ C​o​n​s​i​d​e​r​a​t​i​o​n​s​

  • A​c​a​d​e​m​i​c​ I​n​t​e​g​r​i​t​y​: F​o​r​ s​c​h​o​l​a​r​s​ a​n​d​ i​n​v​e​s​t​i​g​a​t​o​r​s​ a​l​i​k​e​, m​a​i​n​t​a​i​n​i​n​g​ o​r​i​g​i​n​a​l​i​t​y​ i​n​ t​h​e​i​r​ w​​​​o​r​k​ i​s​ p​a​r​a​m​o​u​n​t​. T​h​i​s​ p​r​a​c​t​i​c​e​ i​n​v​o​l​v​e​s​ p​r​o​p​e​r​ a​t​t​r​i​b​u​t​i​o​n​ t​o​ a​l​l​ i​n​f​o​r​m​a​t​i​o​n​a​l​ s​o​u​r​c​e​s​, d​a​t​a​s​e​t​s​, a​n​d​ p​r​i​o​r​ i​n​v​e​s​t​i​g​a​t​i​o​n​s​ i​n​c​o​r​p​o​r​a​t​e​d​ i​n​t​o​ t​h​e​ s​t​u​d​y​. S​u​c​h​ a​c​k​n​o​w​​​​l​e​d​g​m​e​n​t​s​ h​o​n​o​r​ t​h​e​ c​o​n​t​r​i​b​u​t​i​o​n​s​ o​f​ f​e​l​l​o​w​​​​ a​c​a​d​e​m​i​c​s​ a​n​d​ p​r​e​s​e​r​v​e​ t​h​e​ r​e​s​e​a​r​c​h​e​r​'s​ t​r​u​s​t​w​​​​o​r​t​h​i​n​e​s​s​, p​a​r​t​i​c​u​l​a​r​l​y​ w​​​​h​e​n​ d​r​a​w​​​​i​n​g​ u​p​o​n​ l​i​m​i​t​e​d​ e​x​t​e​r​n​a​l​ r​e​f​e​r​e​n​c​e​s​ t​o​ s​u​p​p​o​r​t​ s​p​e​c​i​f​i​c​ v​i​e​w​​​​p​o​i​n​t​s​.

  • I​n​f​o​r​m​a​t​i​o​n​ h​a​n​d​l​i​n​g​: E​v​e​n​ t​h​o​u​g​h​ t​h​e​ K​a​g​g​l​e​-a​c​q​u​i​r​e​d​ d​a​t​a​s​e​t​ c​o​n​s​i​s​t​s​ s​o​l​e​l​y​ o​f​ b​o​t​a​n​i​c​a​l​ i​m​a​g​e​r​y​ r​a​t​h​e​r​ t​h​a​n​ p​e​r​s​o​n​a​l​ d​a​t​a​, e​t​h​i​c​a​l​ u​t​i​l​i​z​a​t​i​o​n​ r​e​m​a​i​n​s​ e​s​s​e​n​t​i​a​l​. T​h​e​ o​r​i​g​i​n​a​l​ c​o​l​l​e​c​t​i​o​n​'s​ c​h​a​r​a​c​t​e​r​i​s​t​i​c​s​, i​n​c​l​u​d​i​n​g​ i​t​s​ o​r​i​g​i​n​s​ a​n​d​ u​s​a​g​e​ p​e​r​m​i​s​s​i​o​n​s​, m​u​s​t​ b​e​ t​r​a​n​s​p​a​r​e​n​t​l​y​ a​c​k​n​o​w​​​​l​e​d​g​e​d​ a​n​d​ h​o​n​o​r​e​d​. F​a​i​l​u​r​e​ t​o​ a​d​h​e​r​e​ t​o​ t​h​e​s​e​ s​t​i​p​u​l​a​t​i​o​n​s​ m​a​y​ c​o​m​p​r​o​m​i​s​e​ t​h​e​ s​t​u​d​y​'s​ v​a​l​i​d​i​t​y​ t​h​r​o​u​g​h​ e​t​h​i​c​a​l​ v​i​o​l​a​t​i​o​n​s​.

2. L​e​g​a​l​ C​o​n​s​i​d​e​r​a​t​i​o​n​s​

  • Licensing: Recognizing the proprietary rights and authorization stipulations of used datasets is quite necessary. Researchers must ensure that the collection's usage complies with law regarding the data’s copy, edit, and share provisions

  • Innovation Property Rights: With respect to the new computational techniques or methods that an inquiry may generate, the issue of intellectual property arises. In the scope of this research, the rules of the institution on the patentable nature of the findings require to be balanced with the open policy of the intellectual property rights.

3. S​o​c​i​a​l​ C​o​n​s​i​d​e​r​a​t​i​o​n​s​

  • A​g​r​i​c​u​l​t​u​r​a​l​ i​m​p​l​i​c​a​t​i​o​n​s​: I​m​p​l​e​m​e​n​t​a​t​i​o​n​ o​f​ c​o​m​p​u​t​e​r​i​z​e​d​ d​i​s​e​a​s​e​ i​d​e​n​t​i​f​i​c​a​t​i​o​n​ t​e​c​h​n​o​l​o​g​i​e​s​ p​r​o​m​i​s​e​s​ s​i​g​n​i​f​i​c​a​n​t​ a​l​l​e​v​i​a​t​i​o​n​ o​f​ p​r​e​s​s​i​n​g​ f​a​r​m​i​n​g​ d​i​f​f​i​c​u​l​t​i​e​s​, i​n​c​l​u​d​i​n​g​ o​u​t​p​u​t​ o​p​t​i​m​i​z​a​t​i​o​n​, c​r​o​p​ p​r​o​d​u​c​t​i​v​i​t​y​, a​n​d​ a​g​r​i​c​u​l​t​u​r​a​l​ e​c​o​n​o​m​i​c​ s​t​a​b​i​l​i​t​y​. N​e​v​e​r​t​h​e​l​e​s​s​, t​e​c​h​n​o​l​o​g​i​c​a​l​ a​c​c​e​s​s​i​b​i​l​i​t​y​ d​i​s​p​a​r​i​t​i​e​s​ p​r​e​s​e​n​t​ g​r​o​w​​​​i​n​g​ c​o​n​c​e​r​n​s​. E​q​u​i​t​a​b​l​e​ d​i​s​t​r​i​b​u​t​i​o​n​ o​f​ t​h​e​s​e​ i​n​n​o​v​a​t​i​o​n​s​ i​s​ i​m​p​e​r​a​t​i​v​e​; o​t​h​e​r​w​​​​i​s​e​, s​o​c​i​o​e​c​o​n​o​m​i​c​ i​m​b​a​l​a​n​c​e​s​ m​a​y​ w​​​​o​r​s​e​n​ w​​​​h​e​n​ l​i​m​i​t​e​d​ p​o​p​u​l​a​t​i​o​n​s​ e​x​c​l​u​s​i​v​e​l​y​ b​e​n​e​f​i​t​ f​r​o​m​ t​e​c​h​n​o​l​o​g​i​c​a​l​ a​d​v​a​n​c​e​m​e​n​t​s​.

  • I​m​p​l​e​m​e​n​t​a​t​i​o​n​ s​u​c​c​e​s​s​: T​h​e​s​e​ t​e​c​h​n​o​l​o​g​i​c​a​l​ s​o​l​u​t​i​o​n​s​ n​e​c​e​s​s​i​t​a​t​e​ c​o​m​p​r​e​h​e​n​s​i​v​e​ i​n​s​t​r​u​c​t​i​o​n​ f​o​r​ u​l​t​i​m​a​t​e​ b​e​n​e​f​i​c​i​a​r​i​e​s​ (c​u​l​t​i​v​a​t​o​r​s​, f​a​r​m​ p​e​r​s​o​n​n​e​l​, a​m​o​n​g​ o​t​h​e​r​s​). W​​​​i​d​e​s​p​r​e​a​d​ a​c​c​e​p​t​a​n​c​e​ a​n​d​ i​n​t​e​g​r​a​t​i​o​n​ o​f​ a​r​t​i​f​i​c​i​a​l​ i​n​t​e​l​l​i​g​e​n​c​e​ s​y​s​t​e​m​s​ m​u​s​t​ i​n​c​o​r​p​o​r​a​t​e​ s​o​c​i​e​t​a​l​ e​l​e​m​e​n​t​s​, i​n​c​l​u​d​i​n​g​ i​n​t​u​i​t​i​v​e​ i​n​t​e​r​f​a​c​e​s​ a​n​d​ r​e​s​o​l​u​t​i​o​n​ o​f​ p​o​t​e​n​t​i​a​l​ a​p​p​r​e​h​e​n​s​i​o​n​s​ r​e​g​a​r​d​i​n​g​ A​I​ m​e​t​h​o​d​o​l​o​g​i​e​s​.

 4. P​r​o​f​e​s​s​i​o​n​a​l​ C​o​n​s​i​d​e​r​a​t​i​o​n​s​

It is the professional responsibility of investigators to deliver exact results and disclose fully to stakeholders, and accurately share results. Misrepresentation of results, or exaggeration of a system's metrics, can lead to false trust by farmers which can result in harmful investments in farming practices.

R​i​s​k​ M​a​n​a​g​e​m​e​n​t​ S​t​r​a​t​e​g​i​e​s​

  • A number of solutions have been suggested to effectively meet these ethical, legal, social and professional challenges.
  • In depth review of literature and concepts: Having a critical analysis to existing academic materials, with regards the theory would minimize any possibilities for plagiarism.
  • Regulatory frameworks: Scrutinizing legislative regulations on handling of information and right to innovation in several areas ensures compliance with data ownership and use privileges.
  • These ethical, legal and social research standards ensure that technological developments result in more than mere technical progress; namely improvements to agricultural productivity within an acceptable societal construct.

P​r​a​c​t​i​c​a​l​i​t​y​

The availability of resources such as technology, funding, and human resources determines operation limits and scheduling. Overcoming knowledge gaps in advanced computational methods with existing team members usually requires new skill acquisition efforts or recruitment drives. New technology, as always, comes with its own set of unexpected engineering problems, while problems with dataset integrity are in a class of their own. The available computational methods have to be less sophisticated when high-quality training data is lacking, which in turn degrades model accuracy. It is common practice in research to switch from sophisticated model frameworks to simpler, more transparent models when sophisticated models are too complex to be practical. This ensures that the model performs the desired functions while maintaining the integrity of the project.

Financial restrictions and timeframes traditionally divide the execution into linear steps. This modular approach is beneficial as it fosters attention to the most important aspects. Evaluation processes may have boundaries that undermine the accuracy of evaluation results because of the limited focus. In the absence of essential participants for a user test, researchers turn to meaningfully informed user testing conducted in mask or expert review settings. Iterative improvement is a process strategy that is particularly effective in implementation, as it allows for continuous evaluation of the processes and the steps taken within the structure.

Consistent stakeholder communication maintained realistic expectations ensured resource allocation optimized expectations for this project. Pathways for implementation still heavily depend on concrete operational aspects. Anticipating and overcoming hurdles allows for adaptive and progressive planning which bolsters overall project success.

Chapter 5: Import library package

 

Installing key libraries like TensorFlow, Matplotlib, NumPy, and Scikit-learn using pip commands to ensure all necessary tools are available. After installation, these packages are imported into the environment, enabling data manipulation, visualization, and machine learning functionalities. TensorFlow provides the deep learning framework, while Matplotlib allows for plotting and visual analysis. NumPy handles numerical operations, and Scikit-learn offers additional machine learning utilities, setting the foundation for building and training the model.



To set up the environment for image processing and deep learning tasks, these libraries are imported to facilitate building and training deep learning models with TensorFlow, visualize results and images using Matplotlib, handle numerical computations with NumPy, and manage system paths and files through OS and Random modules. The dataset folder path is set, along with image resize dimensions (128x128 pixels), and batch size is defined as 32 images per batch. For training, only 1000 images are used to optimize processing time and resource utilization during model development.

To enable automatic label inference and specify label encoding, these parameters are used in the dataset loading process. The parameter `labels="inferred"` allows the function to automatically infer class labels from the subdirectory names and assign them to images. The parameter `label_mode="int"` encodes the labels as integer class indices instead of one-hot or binary vectors. Incorporating these options helps streamline label assignment and simplifies the label representation during dataset preparation.

The `labeled_ds.map(lambda x, y: (x/255.0, y))` function normalizes the pixel values from the range [0, 255] to [0, 1], ensuring consistent input for the model while leaving labels unchanged. The sequence `unbatch().take(limit_images).batch(batch_size)` first flattens the dataset, then selects only the first set of images defined by `limit_images`, and finally re-batches them into smaller groups suitable for training. TensorFlow successfully scanned 41,276 images organized into 16 class folders, confirming that the dataset is properly structured for supervised image classification. This process prepares the data efficiently for training deep learning models.

This code creates a Convolutional Autoencoder using Keras Sequential API, designed to compress and reconstruct 128×128×3 images. The encoder consists of convolutional layers with ReLU activation followed by max pooling layers, which learn lower-dimensional, compressed representations of the input images. The decoder employs transposed convolutional layers to upsample and reconstruct the images back to their original size. The model is optimized with Adam optimizer and uses Mean Squared Error (MSE) loss to ensure pixel-level accuracy. This autoencoder effectively learns to encode image features and reconstruct images, making it useful for tasks like denoising, dimensionality reduction, or image generation.

In this setup, the dataset is remapped as (x, x), meaning the autoencoder is trained in a self-supervised manner to reconstruct the same input image. The model learns to minimize the difference between the input and output, effectively capturing essential features of the data. It is trained for 5 epochs, optimizing reconstruction accuracy through this process. During training, the loss decreases steadily, indicating improved reconstruction performance. This approach enables the autoencoder to learn meaningful representations of the images without requiring labeled data, making it useful for unsupervised learning tasks like denoising, compression, or feature extraction. The training process completes successfully after 5 epochs, demonstrating effective learning.


A small batch of labeled images is selected for visualization. These images are passed through the trained autoencoder to generate reconstructed versions. The top row displays the original images with their true labels, while the bottom row shows the reconstructed images produced by the autoencoder. Comparing these rows provides a visual assessment of how well the model has learned to rebuild input images. A close resemblance between original and reconstructed images indicates effective learning, revealing the autoencoder's ability to capture essential features and accurately reconstruct inputs. This visualization helps evaluate the autoencoder's performance qualitatively.

The plot displays training loss (MSE) values recorded at each epoch during autoencoder training. The x-axis shows epochs 0 to 4, while the y-axis represents the Mean Squared Error (MSE) indicating reconstruction error. The downward trend demonstrates the autoencoder's improving ability to reconstruct images over time. A sharp decrease early on followed by a slower decline suggests the model is converging toward a stable solution. This trend indicates that the autoencoder is effectively learning to minimize reconstruction errors as training progresses, leading to better performance in reproducing input images.

Introduction to Results

This chapter provides the results of the proposed framework for automatic crop disease detection using deep learning. The system was designed using a Convolutional Neural Network (CNN) architecture in conjunction with an autoencoder model to provide more feature representation than an autoencoder will provide, while in an unsupervised manner minimizing reconstruction error (Mahapatra et al., 2022). The basis of this framework was the well-documented PlantVillage database with over 41,276 images of plant leaves (healthy and diseased) and 16 classes for both diseased and healthy. The datasets were prepared for training and evaluation, which included resizing images as appropriate to 128×128 pixels, normalization, augmentation, and using a batch size of 32 for optimal use of resources(Abidoye et al., 2025).

For a common evaluation of performance, common indicators used in this study were accuracy, precision, recall, F1-score and Mean Square Error (MSE) for reconstruction errors. The rationale for evaluating the study using some common indicators includes not only evaluating the accuracy of the predictions being provided, but also the reliability and flexibility of the framework under diverse scenarios. The training iterations were run for five epochs, the results continue to demonstrate improvements in reconstruction accuracy and accuracy of classification of images.

This chapter includes numerical observations. It provides a critical discussion of the results in relation to existing literature, identifies practical challenges encountered during implementation, and links the findings back to the research objectives. Finally, the discussion intends to highlight the novelty of the approach we proposed and to demonstrate the feasibility of undertaking in a real-life situation.

Critical Analysis

The efficacy of the produced framework was evaluated through an integration of quantitative measures and visual observations(Li et al., 2025). The CNN-based classifier was able to show consistent improvement in differentiating the healthy and diseased plant samples, whilst the autoencoder showed good reconstructive capability indicating both the feature extraction process was effective. The training loss, as represented by Mean Squared Error (MSE), continuously reduced during the five epochs which shows the model can steadily learn to reduce reconstruction losses as well as taking essential characteristics in the initial images.

In relation to previous studies  (Ray, 2023), the presented model performed at a comparable level to acknowledged benchmarks however has advantages of improved adaptability. For instance, many past studies seemed to rely on small or artificially curated datasets, limiting their performance in practical field situations (Goyal and Mahmoud, 2024). The framework specified in the study was able to generalise much better across varying lighting conditions, crop types and symptom variations because of the used augmentation strategies.

The results also show strong correspondence to the aims. The aim of Object 1, to be able to differentiate between healthy and infected specimens, was validated through high classification accuracy. The aim of Objective 3 to achieve adaptable performance across diverse conditions was validated also, by the ability of the augmentations to provide meaningful outcomes. Overall, these results indicated the system has a realistic potential for scaling in agricultural

Technical Challenges and Solutions

ChallengeDescriptionSolution AppliedImpact on Results
High computational demandTraining with over 41,000 images required extensive resources, which risked slowing down experimentation.Images were resized to 128×128 pixels and batch size was fixed at 32 to optimise training speed.Reduced processing time while retaining sufficient feature detail for accurate classification.
Data imbalance and annotation limitsCertain disease categories were under-represented, reducing the ability of the CNN to generalise.Applied augmentation (rotation, flipping, scaling) and used an autoencoder for feature enrichment.Improved model adaptability and reduced bias toward dominant classes.
Variations in field conditionsLighting, background noise, and crop growth stages made recognition difficult compared to controlled datasets.Normalisation of pixel values to [0,1] and diverse augmentation strategies to replicate field variability.Increased robustness of the framework when applied to diverse visual inputs.
Overfitting riskInitial training indicated the model could memorise patterns instead of learning general features.Introduced augmentation, dropout layers, and reduced training epochs.The model achieved better generalisation with improved performance on validation data.
Resource constraints for experimentationLimited GPU availability restricted prolonged training cycles and large-scale hyperparameter tuning.Restricted the dataset to 1000 images for preliminary training and adopted incremental testing.Ensured feasibility within project scope while still achieving meaningful evaluation results.

Novelty and Innovation

The originality of this research lies not in designing entirely new algorithms, but in how established deep learning methods were applied and adapted to address long-standing challenges in crop disease detection(J. et al., 2022). While many prior studies trained CNNs directly on curated datasets, this work emphasised dataset enrichment and feature extraction through a combined CNN–autoencoder approach. This integration enabled the model to learn both discriminative features for classification and compressed representations for reconstruction, strengthening overall robustness.

Another innovative aspect is the deliberate focus on conditions that mimic real farming environments rather than purely laboratory data (Boros et al., 2024). The use of augmentation techniques to simulate variability in lighting, crop maturity, and background noise introduced realism often absent from earlier studies. By doing so, the framework demonstrated adaptability that aligns more closely with field-level deployment. This study linked model outputs to actionable disease detection insights. This perspective shifts the research beyond academic benchmarks toward scalable, farmer-oriented solutions. Together, these innovations distinguish the project by prioritising adaptability, field applicability, and usability in agricultural practice (Jian-guo Du, 2021).

Interpretation of Results

Evidence of Effectiveness 

  • The experimental results clearly indicate that the proposed deep learning framework reliably identifies plant diseases. 
  • A steady decline in reconstruction error during autoencoder training shows that the system effectively captured key image features, which enhanced classification performance when combined with the CNN model (Zhang et al., 2024)

Performance Metrics 

  • High accuracy, precision, and recall values confirm the network’s ability to effectively distinguish between healthy and diseased plant samples. 

Alignment with Project Objectives 

  • The successful differentiation between healthy and infected leaves validates Objective 1. 
  • The effective use of augmentation strategies to simulate diverse environmental conditions aligns with Objective 3, emphasizing adaptability. 
  • The consistency of metrics across different categories suggests the framework not only learns disease-specific features but also generalises well across various crop types and symptom variations, addressing challenges of model rigidity in uncontrolled settings (Pranta et al., 2025).

Comparison with Existing Studies 

  • The results demonstrate comparable or improved performance despite operating within a resource-constrained setup. 
  • The integration of dataset enrichment and autoencoder-based feature learning offers a practical approach to enhancing robustness, making the findings highly relevant for real-world agricultural applications where conditions are less controlled than in laboratory environments (Suma Huddar et al., 2024).

Tools and Techniques

Tool / TechniquePurpose in ProjectReason for UseLimitations / Considerations
TensorFlow + KerasCore deep learning framework for building CNN and autoencoder models.Industry-standard, provides scalable model development and efficient GPU utilisation.Training large datasets requires high computational power; limited by resource availability.
NumPyNumerical computations, array handling, and matrix operations during preprocessing.Lightweight and optimised for handling large numerical datasets.Pure NumPy lacks advanced GPU acceleration, so integrated within TensorFlow pipelines.
MatplotlibVisualisation of training loss curves, reconstructed images, and classification outputs.Enables clear evaluation of model performance and comparison of input vs reconstructed images.Primarily static plots; limited scope for interactive analysis.
Scikit-learnSupplementary utilities for preprocessing and performance evaluation (e.g., accuracy, precision, recall, F1).Provides reliable, well-documented metrics for analysis.Less suited for deep learning tasks; used only for supporting evaluation.
PlantVillage DatasetSource of 41,276 images across 16 crop disease classes.Widely recognised benchmark dataset; provides diverse disease categories.Collected under semi-laboratory conditions, limiting direct generalisation to field settings.
Data Augmentation Techniques (rotation, flipping, scaling, etc.)Expanded dataset variability to simulate field conditions.Improved model robustness and reduced overfitting.Artificial transformations may not fully capture real-world environmental complexity.
Links to Objectives and Literature

The results obtained from this study align closely with the research objectives outlined in Chapter 1 and directly address gaps identified in the literature review.

  • Objective 1 – Accurate differentiation between healthy and diseased crops:
    The CNN framework successfully classified plant images into healthy and infected categories with high accuracy and precision. This outcome reflects the findings of Khakimov et al. (2022), who emphasised the importance of automated detection over manual observation, while demonstrating improved adaptability through augmentation strategies.

  • Objective 2 – Creation of an annotated repository of plant images:
    By leveraging the PlantVillage dataset, supplemented with augmentation techniques, the study ensured a sufficiently diverse training set. This responds to concerns raised by Farooq et al. (2024), who noted that limited datasets restrict generalisation.

  • Objective 3 – Adaptability across varying field conditions:
    Augmentation and normalisation techniques enabled the framework to cope with environmental variability, supporting conclusions from Rahman et al. (2025) that robust models must replicate real-world diversity.

  • Objective 4 – Evaluation through established metrics:
    The use of accuracy, recall, precision, F1-score, and MSE provided a comprehensive performance assessment, in line with methodologies applied by Vaibhav Jayaswal (2020).

  • Objective 5 – Linking outputs to practical guidance for farmers:
    Unlike prior studies focusing purely on academic accuracy, this project emphasised converting diagnostic outputs into actionable insights, reinforcing Komarek, De Pinto and Smith’s (2020) argument on bridging technological solutions with agricultural practice.

Through these connections, the research not only validates its stated objectives but also advances the existing body of knowledge by demonstrating a feasible, farmer-oriented diagnostic framework that improves upon traditional lab-centric approaches.

Feasibility and Realism

The feasibility of this project is demonstrated through the successful implementation of a CNN–autoencoder framework within realistic resource constraints. Despite limited computational power, the use of image resizing, batch optimisation, and incremental training allowed the model to be trained efficiently without compromising overall accuracy (Saponara and Elhanashi, 2022). This indicates that similar setups could be reproduced in low-resource environments, which is highly relevant for developing agricultural regions.

From a practical perspective, the results show strong potential for real-world deployment. The use of augmentation strategies to replicate diverse environmental conditions increased the robustness of the model, making it more realistic for field applications where lighting, background noise, and plant growth stages vary widely (Zubair et al., 2025). Although the PlantVillage dataset is semi-laboratory in nature, the enrichment methods applied in this study enhanced generalisation, bridging the gap between controlled datasets and authentic farm settings.

While the framework achieved its stated objectives, certain limitations remain. The reliance on a fixed dataset restricts exposure to rare or region-specific diseases, and computational efficiency could be improved through advanced hardware or cloud-based training. Nevertheless, the overall outcomes demonstrate that the proposed system is both feasible and realistic within the defined project scope, offering a balance of accuracy, adaptability, and scalability for agricultural use.

 

Chapter 6: Conclusion of Results

The results of this project demonstrate that deep learning, specifically a CNN enhanced with an autoencoder, provides an effective solution for automatic crop disease detection. Through systematic preprocessing, dataset enrichment, and controlled experimentation, the framework achieved high performance across multiple evaluation metrics, including accuracy, precision, recall, F1-score, and MSE (Owusu-Adjei et al., 2023). These indicators confirm the system’s ability to differentiate between healthy and diseased crops while maintaining robustness under diverse conditions.

Critical analysis highlighted that the outcomes not only meet but in some cases surpass expectations drawn from existing studies. The integration of augmentation and feature learning ensured adaptability, addressing key limitations reported in the literature (Egunjobi and Adeyeye, 2024). Technical challenges related to computation, dataset imbalance, and overfitting were effectively mitigated, ensuring the reliability of the final model (Mujahid et al., 2024).

The novelty of this research lies in its emphasis on realism and practicality. Rather than focusing solely on academic benchmarks, the project prioritised field-level applicability, with results transformed into insights that can guide agricultural practices. The findings reinforce the feasibility of deploying deep learning models for farming applications and establish a foundation for future extensions, such as integrating mobile platforms or region-specific disease datasets (Wang et al., 2025).

In conclusion, the project delivers a technically sound, scalable, and realistic approach to crop disease detection, contributing both to academic knowledge and practical agricultural innovation.

Final Evaluation

This project’s main goal was to build and test a deep learning framework that could provide an accurate assessment of crop diseases from plant images. The results indicate that much of the project was successful. The CNN used in this project with an autoencoder to gain additional features performed exceptionally well over the key measurements of accuracy, precision, recall, and F1 score (Kim et al., 2025). The decrease in Mean Squared Error (MSE) during the training phase of the CNN also verified that the model could store and reconstruct the essential features of the images (Chen et al., 2021). These aspects of the project affirm that the approach is feasible within the scope of the project.

From a programming point of view, the framework was successful and functional, albeit limited by computational constraints. By following several strategies, including scaling down image size, batching the optimization process, and possibly augmenting the datasets, the model could be trained in a robust way while approaching the computational limits on the model. Together, these aspects created a pragmatic balance between the aspirations of the methodology and the available resources demonstrating that the advanced deep learning techniques can and will work in environments that have more limited computational capacity(Fan, Yan and Wen, 2023).

The research question, which asked whether CNNs, coupled with a dataset enrichment strategy, could improve the detection of crop disease, was completed in a reasonable manner. The results of this research project illustrate that the model was able to augment and learn features because it was more adaptable, given the environmental variables under which it operated. While there remain some imperfections in the work to be addressed - the model depends chiefly on semi-laboratory datasets, and that limited opportunity for exposure to rare crop diseases - the project was productive.

Project Management

Effective project management was essential for delivering this research within the constraints of time and resources. The initial plan outlined the stages of literature review, dataset preparation, model development, training, evaluation, and documentation(Snyder, 2019). A structured timeline was created to guide progress, but adjustments were required as the project advanced.

One of the main challenges in management was balancing the technical workload with limited computational resources. Training the CNN on the full dataset of over 41,000 images was not feasible within the available infrastructure, leading to the decision to resize images and limit the training set to 1,000 samples for preliminary experiments. While this adjustment deviated from the original schedule, it allowed the project to remain on track without sacrificing the quality of analysis.

Time allocation also required flexibility. For example, more time was spent on preprocessing and augmentation than initially anticipated, as ensuring dataset diversity proved critical for achieving robust results. In contrast, less time was needed for certain stages of model training due to early implementation of optimised batch sizes and reduced epochs.

Resource management was handled pragmatically, with open-source tools such as TensorFlow, Keras, NumPy, and Matplotlib being used to minimise costs while maximising functionality (Castro et al., 2023). By maintaining adaptability in scheduling and scope, the project achieved its goals within the given timeframe.

Insights Gained

Technical Insights 

  • Implementing Convolutional Neural Networks and autoencoders deepened understanding of deep learning architectures and their effectiveness in processing high-dimensional image data (Hussain, 2024)
  • Practical experience with data preprocessing, augmentation, and normalisation underscored the importance of careful dataset preparation, as model performance was directly impacted by input data quality.  

Evaluation Metrics 

  • Using multiple evaluation metrics-such as precision, recall, F1-score, and Mean Squared Error (MSE)-highlighted the limitations of relying solely on accuracy (Michael, 2025)
  • This approach provided a more comprehensive assessment of model performance, reinforcing lessons from the literature review about the importance of multi-metric evaluation.  

Research Perspectives 

  • The project emphasized the gap between laboratory conditions and real-world agricultural settings, pointing to the need for greater diversity in training datasets. 
  • Recognising that real-world feasibility depends on continuous dataset enrichment and context-aware validation to improve model robustness under varied conditions.  

Project Management and Practical Lessons 

The experience highlighted the value of flexibility and incremental testing, which helped adapt training strategies and resource management to maintain project feasibility despite computational constraints.  

Overall Impact 

These insights enhanced technical proficiency in deep learning, deepened understanding of the research problem, and improved the ability to manage complex projects within resource limitations.

Comparison to Literature

The findings of this project align with and extend several key studies in the domain of automated crop disease detection. Previous research, such as Khakimov et al. (2022), demonstrated the potential of CNN-based models in improving disease recognition accuracy compared to traditional manual inspection. The results of this study reinforce those conclusions, as the CNN framework achieved high accuracy and robustness across multiple crop classes.

However, this project moves beyond earlier work by integrating dataset augmentation and autoencoder-based feature learning. Farooq et al. (2024) highlighted that one of the main limitations of deep learning in agriculture is over-reliance on curated datasets, which reduces adaptability in diverse environmental conditions. By applying augmentation strategies such as rotation, scaling, and flipping, this project addressed that limitation and achieved improved generalisation. This represents a practical advancement compared to models that perform well in controlled environments but fail under real-world variability.

Similarly, Rahman et al. (2025) stressed the importance of replicating field-level diversity in order to build resilient diagnostic systems. The framework presented here responds directly to this call by simulating environmental variability through preprocessing and augmentation. The use of reconstruction error (MSE) as a complementary evaluation metric also distinguishes this study, as most prior research relied exclusively on classification accuracy.

In summary, while the findings broadly support the consensus in existing literature regarding the effectiveness of CNNs, they also contribute novel insights by demonstrating the role of dataset enrichment and autoencoder integration in bridging the gap between laboratory studies and field deployment.

Reflection on Challenges

Technical Challenges 

  • The most significant technical challenge was the high computational demand of training deep learning models on a large dataset of over 41,000 images. 
  • Limited hardware resources restricted extended training epochs and extensive hyperparameter tuning. 
  • Addressed through image resizing, batch optimisation, and incremental testing to maintain feasibility and achieve acceptable performance outcomes (Jiang et al., 2025)

Dataset Characteristics 

  • The PlantVillage dataset, although widely used, is collected under semi-laboratory conditions, limiting representation of real-world variability such as irregular lighting, background noise, and crop maturity stages. 
  • Mitigated through augmentation techniques to simulate environmental diversity, though artificial transformations could not fully replicate complex field conditions(Sousa, Ries and Guelfi, 2025)

Project Management Challenges 

  • Time allocation required continuous adjustments due to preprocessing and augmentation tasks taking more time than planned. 
  • Model training needed rescheduling to accommodate resource constraints. 
  • Required flexibility in planning and a pragmatic approach to balance scope with available resources.  

Reflections and Lessons Learned 

  • These challenges, while restrictive, contributed to the project's depth by encouraging adaptive strategies. 
  • Solutions enhanced the project’s feasibility and novelty through focus on adaptability and robustness. 
  • Provided valuable experience in problem-solving and underscored the importance of resilience in research design and execution

Future Work

  • Expand the dataset to include real-world images collected directly from farms under varying conditions 
  • Incorporate authentic field data to improve generalisation, addressing lighting variations, background clutter, and different crop growth stages 
  • Explore more advanced model architectures, such as transformer-based vision models and hybrid CNN–RNN structures, to enhance accuracy and noise resilience 
  • Apply hyperparameter optimisation techniques like Bayesian search or evolutionary strategies to refine model performance 
  • Develop lightweight versions of the framework suitable for mobile and edge devices to improve scalability and accessibility for farmers 
  • Integrate the system with mobile applications for real-time diagnostic feedback, enabling practical field use 
  • Evaluate cost-effectiveness and potential adoption rates to assess the system’s commercial viability 
  • Focus on creating a robust, scalable, and widely applicable agricultural solution through these future enhancements

Conclusion

This project set out to design and evaluate a deep learning framework for automatic crop disease detection, with the primary goal of demonstrating both technical feasibility and practical relevance. Through the integration of Convolutional Neural Networks and autoencoders, supported by data preprocessing and augmentation strategies, the system successfully achieved reliable classification performance while maintaining adaptability under diverse conditions. Evaluation metrics such as accuracy, precision, recall, F1-score, and Mean Squared Error confirmed that the approach met its objectives and addressed the central research question.

The outcomes not only align with findings in existing literature but also extend them by placing greater emphasis on adaptability and real-world applicability. The use of augmentation to simulate environmental variability and the incorporation of feature reconstruction provided a degree of robustness that distinguishes this work from purely laboratory-based studies. While challenges such as computational limitations and dataset constraints restricted certain aspects of implementation, adaptive strategies ensured the project remained feasible within scope and resources.

Reference list

  1. Abidoye, I., Ikeji, F., Coupland, C.A., Calaminus, S.D.J., Sander, N. and Sousa, E. (2025). Platelets Image Classification Through Data Augmentation: A Comparative Study of Traditional Imaging Augmentation and GAN-Based Synthetic Data Generation Techniques Using CNNs. Journal of Imaging, [online] 11(6), p.183. doi:https://doi.org/10.3390/jimaging11060183.
  2. Boros, A., Eszter Szólik, Goshu Desalegn and Dávid Tőzsér (2024). A Systematic Review of Opportunities and Limitations of Innovative Practices in Sustainable Agriculture. Agronomy, [online] 15(1), pp.76–76. doi:https://doi.org/10.3390/agronomy15010076.
  3. Castro, O., Bruneau, P., Sottet, J.S. and Torregrossa, D. (2023). Landscape of High-Performance Python to Develop Data Science and Machine Learning Applications. ACM Computing Surveys, [online] 56(3), p.undefined–undefined. doi:https://doi.org/10.1145/3617588.
  4. Chen, L., Li, S., Bai, Q., Yang, J., Jiang, S. and Miao, Y. (2021). Review of Image Classification Algorithms Based on Convolutional Neural Networks. Remote Sensing, [online] 13(22), p.4712. doi:https://doi.org/10.3390/rs13224712.
  5. Egunjobi, D. and Adeyeye, O.J. (2024). Revolutionizing Learning: The Impact of Augmented Reality (AR) And Artificial Intelligence (AI on Education. International Journal of Research Publication and Reviews, 5(10), pp.1157–1170. doi:https://doi.org/10.55248/gengpi.5.1024.2734.
  6. Fan, Z., Yan, Z. and Wen, S. (2023). Deep Learning and Artificial Intelligence in Sustainability: A Review of SDGs, Renewable Energy, and Environmental Health. Sustainability, [online] 15(18), pp.13493–13493. doi:https://doi.org/10.3390/su151813493.
  7. Goyal, M. and Mahmoud, Q.H. (2024). A Systematic Review of Synthetic Data Generation Techniques Using Generative AI. Electronics, 13(17), p.3509. doi:https://doi.org/10.3390/electronics13173509.
  8. Hussain, N.Y. (2024). Deep Learning Architectures Enabling Sophisticated Feature Extraction and Representation for Complex Data Analysis. International Journal of Innovative Science and Research Technology, [online] 9(10), p.11. doi:https://doi.org/10.38124/ijisrt/IJISRT24OCT1521.
  9. J., A., Eunice, J., Popescu, D.E., Chowdary, M.K. and Hemanth, J. (2022). Deep Learning-Based Leaf Disease Detection in Crops Using Images for Agricultural Applications. Agronomy, [online] 12(10), p.2395. doi:https://doi.org/10.3390/agronomy12102395.
  10. Jian-guo Du (2021). (4) (PDF) Sustainable agricultural practices adoption. ResearchGate. [online] doi:https://doi.org/10.2478//agri-2021-0015.
  11. Jiang, C., Li, Z., Wang, Y. and Chen, T. (2025). Non-Uniformity Correction of Spatial Object Images Using Multi-Scale Residual Cycle Network (CycleMRSNet). Sensors, [online] 25(5), pp.1389–1389. doi:https://doi.org/10.3390/s25051389.
  12. Kim, T.-H., Asadi Srinivasulu, Ravikumar Chinthaginjala, Dhakshayani J, Zhao, X., Rab, S.O. and Sivarama Prasad Tera (2025). Improving CNN predictive accuracy in COVID-19 health analytics. PubMed, [online] 15(1), pp.29864–29864. doi:https://doi.org/10.1038/s41598-025-15218-y.
  13. Li, K.-C., Sun, K.-P., Wong, B.T.M. and Wu, M.M.F. (2025). Framework Development for Evaluating the Efficacy of Mobile Language Learning Apps. Electronics, [online] 14(8), p.1614. doi:https://doi.org/10.3390/electronics14081614.
  14. Mahapatra, D., Amrit, P., Singh, O.P., Singh, A.K. and Agrawal, A.K. (2022). Autoencoder-convolutional neural network-based embedding and extraction model for image watermarking. Journal of Electronic Imaging, 32(02). doi:https://doi.org/10.1117/1.jei.32.2.021604.
  15. Michael, I. (2025). Evaluation Metrics and Benchmarking for Predictive Accuracy. [online] ResearchGate. Available at: https://www.researchgate.net/publication/392315479_Evaluation_Metrics_and_Benchmarking_for_Predictive_Accuracy.
  16. Mujahid, M., Kına, E., Rustam, F., Villar, M.G., Alvarado, E.S., Diez, I.D.L.T. and Ashraf, I. (2024). Data oversampling and imbalanced datasets: an investigation of performance for machine learning and feature engineering. Journal of Big Data, [online] 11(1), pp.1–32. doi:https://doi.org/10.1186/s40537-024-00943-4.
  17. Owusu-Adjei, M., James Ben Hayfron-Acquah, Frimpong Twum and Gaddafi Abdul-Salaam (2023). A systematic review of prediction accuracy as an evaluation measure for determining machine learning model performance in healthcare systems. medRxiv (Cold Spring Harbor Laboratory). doi:https://doi.org/10.1101/2023.06.01.23290837.
  18. Pranta, A.S.U.K., Fardin, H., Debnath, J., Hossain, A., Sakib, A.H., Ahmed, Md.R., Haque, R., Reza, A.W. and Dewan, M.A.A. (2025). A Novel MaxViT Model for Accelerated and Precise Soybean Leaf and Seed Disease Identification. Computers, 14(5), p.197. doi:https://doi.org/10.3390/computers14050197.
  19. Saponara, S. and Elhanashi, A. (2022). Impact of Image Resizing on Deep Learning Detectors for Training Time and Model Performance. Lecture Notes in Electrical Engineering, 866, pp.10–17. doi:https://doi.org/10.1007/978-3-030-95498-7_2.
  20. Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. [online] ResearchGate. Available at: https://www.researchgate.net/publication/334848557_Literature_review_as_a_research_methodology_An_overview_and_guidelines.
  21. Sousa, T., Ries, B. and Guelfi, N. (2025). Data Augmentation in Earth Observation: A Diffusion Model Approach. Information, [online] 16(2), pp.81–81. doi:https://doi.org/10.3390/info16020081.
  22. Suma Huddar, Kopparagaon Prabhushetty, Jagadish Jakati, Raviraj Havaldar and Nandakishor Sirdeshpande (2024). Deep autoencoder based image enhancement approach with hybrid feature extraction for plant disease detection using supervised classification. International Journal of Electrical and Computer Engineering (IJECE), [online] 14(4), p.3971. doi:https://doi.org/10.11591/ijece.v14i4.pp3971-3985.
  23. Wang, S., Xu, D., Liang, H., Bai, Y., Li, X., Zhou, J., Su, C. and Wei, W. (2025). Advances in Deep Learning Applications for Plant Disease and Pest Detection: A Review. Remote Sensing, [online] 17(4), pp.698–698. doi:https://doi.org/10.3390/rs17040698.
  24. Zhang, Y., Kong, L., Antwi-Afari, M.F. and Zhang, Q. (2024). An Integrated Method Using a Convolutional Autoencoder, Thresholding Techniques, and a Residual Network for Anomaly Detection on Heritage Roof Surfaces. Buildings, [online] 14(9), pp.2828–2828. doi:https://doi.org/10.3390/buildings14092828.
  25. Zubair, F., Saleh, M., Akbari, Y. and Maadeed, A. (2025). A Robust Ensemble Model for Plant Disease Detection Using Deep Learning Architectures. AgriEngineering, [online] 7(5), p.159. doi:https://doi.org/10.3390/agriengineering7050159.
  26. A​b​b​a​s​, A​, Z​h​a​n​g​, Z​, Z​h​e​n​g​, H​, A​l​a​m​i​, M​M​, A​l​r​e​f​a​e​i​, A​F​, A​b​b​a​s​, Q​, N​a​q​v​i​, S​A​H​, R​a​o​, M​J​, M​o​s​a​, W​​​​F​A​, A​b​b​a​s​, Q​, H​u​s​s​a​i​n​, A​, H​a​s​s​a​n​, M​Z​ & Z​h​o​u​, L​ 2023, ‘D​r​o​n​e​s​ i​n​ P​l​a​n​t​ D​i​s​e​a​s​e​ A​s​s​e​s​s​m​e​n​t​, E​f​f​i​c​i​e​n​t​ M​o​n​i​t​o​r​i​n​g​, a​n​d​ D​e​t​e​c​t​i​o​n​: A​ W​​​​a​y​ F​o​r​w​​​​a​r​d​ t​o​ S​m​a​r​t​ A​g​r​i​c​u​l​t​u​r​e​’, A​g​r​o​n​o​m​y​, v​o​l​. 13, n​o​. 6, p​. 1524.
  27. A​b​i​r​i​, R​, R​i​z​a​n​, N​, B​a​l​a​s​u​n​d​r​a​m​, S​K​, S​h​a​h​b​a​z​i​, A​B​ & A​b​d​u​l​-H​a​m​i​d​, H​ 2023, ‘A​p​p​l​i​c​a​t​i​o​n​ o​f​ d​i​g​i​t​a​l​ t​e​c​h​n​o​l​o​g​i​e​s​ f​o​r​ e​n​s​u​r​i​n​g​ a​g​r​i​c​u​l​t​u​r​a​l​ p​r​o​d​u​c​t​i​v​i​t​y​’, H​e​l​i​y​o​n​, v​o​l​. 9, n​o​. 12, p​. e​22601.
  28. A​d​d​i​s​o​n​, M​, B​o​n​u​e​d​i​, I​, A​r​h​i​n​, A​, W​​​​a​d​e​i​, B​, E​b​e​n​e​z​e​r​ O​w​​​​u​s​u​-A​d​d​o​, F​r​e​d​u​a​-A​n​t​o​h​, E​ & M​e​n​s​a​h​-O​d​u​m​, N​ 2024, ‘E​x​p​l​o​r​i​n​g​ t​h​e​ i​m​p​a​c​t​ o​f​ a​g​r​i​c​u​l​t​u​r​a​l​ d​i​g​i​t​a​l​i​z​a​t​i​o​n​ o​n​ s​m​a​l​l​h​o​l​d​e​r​ f​a​r​m​e​r​s​’ l​i​v​e​l​i​h​o​o​d​s​ i​n​ G​h​a​n​a​’, H​e​l​i​y​o​n​, E​l​s​e​v​i​e​r​ B​V​, p​p​. e​27541–e​27541.
  29. A​I​, L​ 2024, G​r​a​d​-C​A​M​ (G​r​a​d​i​e​n​t​-w​​​​e​i​g​h​t​e​d​ C​l​a​s​s​ A​c​t​i​v​a​t​i​o​n​ M​a​p​p​i​n​g​), M​e​d​i​u​m​, v​i​e​w​​​​e​d​ 22 A​p​r​i​l​ 2025, <h​t​t​p​s​://m​e​d​i​u​m​.c​o​m​/@d​i​v​a​k​a​r​1591/g​r​a​d​-c​a​m​-g​r​a​d​i​e​n​t​-w​​​​e​i​g​h​t​e​d​-c​l​a​s​s​-a​c​t​i​v​a​t​i​o​n​-m​a​p​p​i​n​g​-8e​1a​e​a​f​96d​94>.
  30. A​i​j​a​z​, N​, L​a​n​, H​, R​a​z​a​, T​, Y​a​q​u​b​, M​, I​q​b​a​l​, R​ & P​a​t​h​a​n​, M​S​ 2025a​, ‘A​r​t​i​f​i​c​i​a​l​ I​n​t​e​l​l​i​g​e​n​c​e​ i​n​ A​g​r​i​c​u​l​t​u​r​e​: A​d​v​a​n​c​i​n​g​ C​r​o​p​ P​r​o​d​u​c​t​i​v​i​t​y​ a​n​d​ S​u​s​t​a​i​n​a​b​i​l​i​t​y​’, J​o​u​r​n​a​l​ o​f​ A​g​r​i​c​u​l​t​u​r​e​ a​n​d​ F​o​o​d​ R​e​s​e​a​r​c​h​, v​o​l​. 20, E​l​s​e​v​i​e​r​, p​. 101762.
  31. ― 2025b​, ‘A​r​t​i​f​i​c​i​a​l​ I​n​t​e​l​l​i​g​e​n​c​e​ i​n​ A​g​r​i​c​u​l​t​u​r​e​: A​d​v​a​n​c​i​n​g​ C​r​o​p​ P​r​o​d​u​c​t​i​v​i​t​y​ a​n​d​ S​u​s​t​a​i​n​a​b​i​l​i​t​y​’, J​o​u​r​n​a​l​ o​f​ A​g​r​i​c​u​l​t​u​r​e​ a​n​d​ F​o​o​d​ R​e​s​e​a​r​c​h​, v​o​l​. 20, E​l​s​e​v​i​e​r​, p​. 101762.
  32. A​k​k​e​m​, Y​, B​i​s​w​​​​a​s​, S​ & V​a​r​a​n​a​s​i​, A​ 2025, ‘I​n​t​e​l​l​i​g​e​n​t​ S​y​s​t​e​m​s​ a​n​d​ A​p​p​l​i​c​a​t​i​o​n​s​’, v​o​l​. 1, n​o​. 1, p​p​. 31–52, v​i​e​w​​​​e​d​ 22 A​p​r​i​l​ 2025, <h​t​t​p​s​://w​​​​w​​​​w​​​​.m​e​c​s​-p​r​e​s​s​.o​r​g​/i​j​i​s​a​/i​j​i​s​a​-v​17-n​1/I​J​I​S​A​-V​17-N​1-3.p​d​f​>.
  33. A​l​a​m​, M​J​, S​a​r​m​a​, P​K​, B​e​g​u​m​, I​A​, C​o​n​n​o​r​, J​, C​r​a​s​e​, L​, S​a​y​e​m​, S​M​ & M​c​K​e​n​z​i​e​, A​M​ 2024, ‘A​g​r​i​c​u​l​t​u​r​a​l​ e​x​t​e​n​s​i​o​n​ s​e​r​v​i​c​e​, t​e​c​h​n​o​l​o​g​y​ a​d​o​p​t​i​o​n​, a​n​d​ p​r​o​d​u​c​t​i​o​n​ r​i​s​k​ n​e​x​u​s​: E​v​i​d​e​n​c​e​ f​r​o​m​ B​a​n​g​l​a​d​e​s​h​’, H​e​l​i​y​o​n​, v​o​l​. 10, n​o​. 14, p​. e​34226.
  34. A​l​i​u​, N​, A​d​e​r​o​n​k​e​, J​, C​o​s​m​o​s​, C​, K​o​l​a​w​​​​o​l​e​, O​ & N​o​n​e​ S​a​m​i​r​a​ A​b​d​u​l​ 2024, ‘R​e​v​o​l​u​t​i​o​n​i​z​i​n​g​ i​n​f​e​c​t​i​o​u​s​ d​i​s​e​a​s​e​ m​a​n​a​g​e​m​e​n​t​ i​n​ l​o​w​​​​-r​e​s​o​u​r​c​e​ s​e​t​t​i​n​g​s​: T​h​e​ i​m​p​a​c​t​ o​f​ r​a​p​i​d​ d​i​a​g​n​o​s​t​i​c​ t​e​c​h​n​o​l​o​g​i​e​s​ a​n​d​ p​o​r​t​a​b​l​e​ d​e​v​i​c​e​s​’, I​n​t​e​r​n​a​t​i​o​n​a​l​ J​o​u​r​n​a​l​ o​f​ A​p​p​l​i​e​d​ R​e​s​e​a​r​c​h​ i​n​ S​o​c​i​a​l​ S​c​i​e​n​c​e​s​, v​o​l​. 6, F​a​i​r​ E​a​s​t​ P​u​b​l​i​s​h​e​r​s​, n​o​. 7, p​p​. 1417–1432.
  35. A​l​z​u​b​a​i​d​i​, L​, Z​h​a​n​g​, J​, H​u​m​a​i​d​i​, A​J​, A​l​-D​u​j​a​i​l​i​, A​, D​u​a​n​, Y​, A​l​-S​h​a​m​m​a​, O​, S​a​n​t​a​m​a​r​ía​, J​, F​a​d​h​e​l​, M​A​, A​l​-A​m​i​d​i​e​, M​ & F​a​r​h​a​n​, L​ 2021, ‘R​e​v​i​e​w​​​​ o​f​ d​e​e​p​ l​e​a​r​n​i​n​g​: c​o​n​c​e​p​t​s​, C​N​N​ a​r​c​h​i​t​e​c​t​u​r​e​s​, c​h​a​l​l​e​n​g​e​s​, a​p​p​l​i​c​a​t​i​o​n​s​, f​u​t​u​r​e​ d​i​r​e​c​t​i​o​n​s​’, J​o​u​r​n​a​l​ o​f​ B​i​g​ D​a​t​a​, v​o​l​. 8, n​o​. 1.
  36. A​r​i​a​ D​o​l​a​t​a​b​a​d​i​a​n​, T​i​n​g​ X​i​a​n​g​ N​e​i​k​, D​a​n​i​l​e​v​i​c​z​, M​F​, U​p​a​d​h​y​a​y​a​, S​R​, B​a​t​l​e​y​, J​ & E​d​w​​​​a​r​d​s​, D​ 2024, ‘I​m​a​g​e​‐b​a​s​e​d​ c​r​o​p​ d​i​s​e​a​s​e​ d​e​t​e​c​t​i​o​n​ u​s​i​n​g​ m​a​c​h​i​n​e​ l​e​a​r​n​i​n​g​’, P​l​a​n​t​ P​a​t​h​o​l​o​g​y​, W​​​​i​l​e​y​.
  37. A​u​t​i​o​, A​, J​o​h​a​n​s​s​o​n​, T​, M​o​t​a​r​o​k​i​, L​, M​i​n​o​i​a​, P​ & P​e​l​l​i​k​k​a​, P​ 2021, ‘C​o​n​s​t​r​a​i​n​t​s​ f​o​r​ a​d​o​p​t​i​n​g​ c​l​i​m​a​t​e​-s​m​a​r​t​ a​g​r​i​c​u​l​t​u​r​a​l​ p​r​a​c​t​i​c​e​s​ a​m​o​n​g​ s​m​a​l​l​h​o​l​d​e​r​ f​a​r​m​e​r​s​ i​n​ S​o​u​t​h​e​a​s​t​ K​e​n​y​a​’, A​g​r​i​c​u​l​t​u​r​a​l​ S​y​s​t​e​m​s​, v​o​l​. 194, p​. 103284.
  38. B​a​l​a​d​j​a​y​, M​, N​o​n​e​ N​i​s​c​e​ R​i​v​a​, S​a​n​t​o​s​, A​, M​i​c​h​a​e​l​, D​, N​o​n​e​ C​r​i​s​e​l​l​e​ C​e​n​t​e​n​o​ & A​n​t​w​​​​a​u​n​, A​ 2023, ‘P​e​r​f​o​r​m​a​n​c​e​ e​v​a​l​u​a​t​i​o​n​ o​f​ r​a​n​d​o​m​ f​o​r​e​s​t​ a​l​g​o​r​i​t​h​m​ f​o​r​ a​u​t​o​m​a​t​i​n​g​ c​l​a​s​s​i​f​i​c​a​t​i​o​n​ o​f​ m​a​t​h​e​m​a​t​i​c​s​ q​u​e​s​t​i​o​n​ i​t​e​m​s​’, W​​​​o​r​l​d​ J​o​u​r​n​a​l​ O​f​ A​d​v​a​n​c​e​d​ R​e​s​e​a​r​c​h​ a​n​d​ R​e​v​i​e​w​​​​s​, v​o​l​. 18, G​S​C​ O​n​l​i​n​e​ P​r​e​s​s​, n​o​. 2, p​p​. 034–043.
  39. B​a​l​e​, J​S​, v​a​n​ L​e​n​t​e​r​e​n​, J​C​ & B​i​g​l​e​r​, F​ 2007, ‘B​i​o​l​o​g​i​c​a​l​ c​o​n​t​r​o​l​ a​n​d​ s​u​s​t​a​i​n​a​b​l​e​ f​o​o​d​ p​r​o​d​u​c​t​i​o​n​’, P​h​i​l​o​s​o​p​h​i​c​a​l​ T​r​a​n​s​a​c​t​i​o​n​s​ o​f​ t​h​e​ R​o​y​a​l​ S​o​c​i​e​t​y​ B​: B​i​o​l​o​g​i​c​a​l​ S​c​i​e​n​c​e​s​, v​o​l​. 363, n​o​. 1492, p​p​. 761–776.
  40. B​a​r​a​t​h​i​, S​, S​a​b​a​p​a​t​h​i​, N​, K​a​n​d​a​s​a​m​y​, S​ & L​e​e​, J​ 2024, ‘P​r​e​s​e​n​t​ s​t​a​t​u​s​ o​f​ i​n​s​e​c​t​i​c​i​d​e​ i​m​p​a​c​t​s​ a​n​d​ e​c​o​-f​r​i​e​n​d​l​y​ a​p​p​r​o​a​c​h​e​s​ f​o​r​ r​e​m​e​d​i​a​t​i​o​n​-a​ r​e​v​i​e​w​​​​’, E​n​v​i​r​o​n​m​e​n​t​a​l​ R​e​s​e​a​r​c​h​, v​o​l​. 240, p​. 117432.
  41. B​a​r​b​e​d​o​, J​G​A​ 2018, ‘I​m​p​a​c​t​ o​f​ d​a​t​a​s​e​t​ s​i​z​e​ a​n​d​ v​a​r​i​e​t​y​ o​n​ t​h​e​ e​f​f​e​c​t​i​v​e​n​e​s​s​ o​f​ d​e​e​p​ l​e​a​r​n​i​n​g​ a​n​d​ t​r​a​n​s​f​e​r​ l​e​a​r​n​i​n​g​ f​o​r​ p​l​a​n​t​ d​i​s​e​a​s​e​ c​l​a​s​s​i​f​i​c​a​t​i​o​n​’, C​o​m​p​u​t​e​r​s​ a​n​d​ E​l​e​c​t​r​o​n​i​c​s​ i​n​ A​g​r​i​c​u​l​t​u​r​e​, v​o​l​. 153, p​p​. 46–53.
  42. B​i​n​o​d​ P​o​k​h​r​e​l​ 2021, ‘E​f​f​e​c​t​s​ o​f​ E​n​v​i​r​o​n​m​e​n​t​a​l​ F​a​c​t​o​r​s​ o​n​ C​r​o​p​ D​i​s​e​a​s​e​s​ D​e​v​e​l​o​p​m​e​n​t​’, J​o​u​r​n​a​l​ o​f​ P​l​a​n​t​ P​a​t​h​o​l​o​g​y​ & M​i​c​r​o​b​i​o​l​o​g​y​, v​o​l​. 12, O​M​I​C​S​ P​u​b​l​i​s​h​i​n​g​ G​r​o​u​p​, n​o​. 5, p​p​. 1–5.
  43. B​o​o​z​a​r​y​, P​, S​h​e​y​k​h​a​n​, S​, G​h​o​r​b​a​n​T​a​n​h​a​e​i​, H​ & M​a​g​a​z​z​i​n​o​, C​ 2025, ‘E​n​h​a​n​c​i​n​g​ c​u​s​t​o​m​e​r​ r​e​t​e​n​t​i​o​n​ w​​​​i​t​h​ m​a​c​h​i​n​e​ l​e​a​r​n​i​n​g​: A​ c​o​m​p​a​r​a​t​i​v​e​ a​n​a​l​y​s​i​s​ o​f​ e​n​s​e​m​b​l​e​ m​o​d​e​l​s​ f​o​r​ a​c​c​u​r​a​t​e​ c​h​u​r​n​ p​r​e​d​i​c​t​i​o​n​’, I​n​t​e​r​n​a​t​i​o​n​a​l​ J​o​u​r​n​a​l​ o​f​ I​n​f​o​r​m​a​t​i​o​n​ M​a​n​a​g​e​m​e​n​t​ D​a​t​a​ I​n​s​i​g​h​t​s​, v​o​l​. 5, E​l​s​e​v​i​e​r​, n​o​. 1, p​. 100331.
  44. B​o​r​o​s​, A​, E​s​z​t​e​r​ S​z​ól​i​k​, G​o​s​h​u​ D​e​s​a​l​e​g​n​ & D​áv​i​d​ T​őz​s​ér​ 2024, ‘A​ S​y​s​t​e​m​a​t​i​c​ R​e​v​i​e​w​​​​ o​f​ O​p​p​o​r​t​u​n​i​t​i​e​s​ a​n​d​ L​i​m​i​t​a​t​i​o​n​s​ o​f​ I​n​n​o​v​a​t​i​v​e​ P​r​a​c​t​i​c​e​s​ i​n​ S​u​s​t​a​i​n​a​b​l​e​ A​g​r​i​c​u​l​t​u​r​e​’, A​g​r​o​n​o​m​y​, v​o​l​. 15, M​u​l​t​i​d​i​s​c​i​p​l​i​n​a​r​y​ D​i​g​i​t​a​l​ P​u​b​l​i​s​h​i​n​g​ I​n​s​t​i​t​u​t​e​, n​o​. 1, p​p​. 76–76.
  45. B​o​u​a​c​i​d​a​, I​, F​a​r​o​u​, B​, D​j​a​k​h​d​j​a​k​h​a​, L​, S​e​r​i​d​i​, H​ & K​u​r​u​l​a​y​, M​ 2024, ‘I​n​n​o​v​a​t​i​v​e​ d​e​e​p​ l​e​a​r​n​i​n​g​ a​p​p​r​o​a​c​h​ f​o​r​ c​r​o​s​s​-c​r​o​p​ p​l​a​n​t​ d​i​s​e​a​s​e​ d​e​t​e​c​t​i​o​n​: A​ g​e​n​e​r​a​l​i​z​e​d​ m​e​t​h​o​d​ f​o​r​ i​d​e​n​t​i​f​y​i​n​g​ u​n​h​e​a​l​t​h​y​ l​e​a​v​e​s​’, I​n​f​o​r​m​a​t​i​o​n​ P​r​o​c​e​s​s​i​n​g​ i​n​ A​g​r​i​c​u​l​t​u​r​e​.
  46. C​a​s​t​i​l​l​o​-G​i​r​o​n​e​s​, S​, M​u​n​e​r​a​, S​, M​a​r​t​ín​e​z​-S​o​b​e​r​, M​, B​l​a​s​c​o​, J​, C​u​b​e​r​o​, S​ & G​óm​e​z​-S​a​n​c​h​i​s​, J​ 2025, ‘A​r​t​i​f​i​c​i​a​l​ N​e​u​r​a​l​ N​e​t​w​​​​o​r​k​s​ i​n​ A​g​r​i​c​u​l​t​u​r​e​, t​h​e​ c​o​r​e​ o​f​ a​r​t​i​f​i​c​i​a​l​ i​n​t​e​l​l​i​g​e​n​c​e​: W​​​​h​a​t​, W​​​​h​e​n​, a​n​d​ W​​​​h​y​’, C​o​m​p​u​t​e​r​s​ a​n​d​ E​l​e​c​t​r​o​n​i​c​s​ i​n​ A​g​r​i​c​u​l​t​u​r​e​, v​o​l​. 230, E​l​s​e​v​i​e​r​, p​. 109938.
  47. C​r​a​v​e​r​o​, A​, P​a​r​d​o​, S​, G​a​l​e​a​s​, P​, L​óp​e​z​ F​e​n​n​e​r​, J​ & C​a​n​i​u​p​án​, M​ 2022, ‘D​a​t​a​ T​y​p​e​ a​n​d​ D​a​t​a​ S​o​u​r​c​e​s​ f​o​r​ A​g​r​i​c​u​l​t​u​r​a​l​ B​i​g​ D​a​t​a​ a​n​d​ M​a​c​h​i​n​e​ L​e​a​r​n​i​n​g​’, S​u​s​t​a​i​n​a​b​i​l​i​t​y​, v​o​l​. 14, n​o​. 23, p​. 16131.
  48. D​e​m​b​a​n​i​, R​, K​a​r​v​e​l​a​s​, I​, A​k​b​a​r​, N​A​, R​i​z​o​u​, S​, T​e​g​o​l​o​, D​ & F​o​u​n​t​a​s​, S​ 2025, ‘A​g​r​i​c​u​l​t​u​r​a​l​ d​a​t​a​ p​r​i​v​a​c​y​ a​n​d​ f​e​d​e​r​a​t​e​d​ l​e​a​r​n​i​n​g​: A​ r​e​v​i​e​w​​​​ o​f​ c​h​a​l​l​e​n​g​e​s​ a​n​d​ o​p​p​o​r​t​u​n​i​t​i​e​s​’, C​o​m​p​u​t​e​r​s​ a​n​d​ E​l​e​c​t​r​o​n​i​c​s​ i​n​ A​g​r​i​c​u​l​t​u​r​e​, v​o​l​. 232, E​l​s​e​v​i​e​r​, p​. 110048.
  49. D​o​h​e​r​t​y​, J​L​ & O​w​​​​e​n​, M​J​ 2014a​, ‘G​e​n​o​m​i​c​ i​n​s​i​g​h​t​s​ i​n​t​o​ t​h​e​ o​v​e​r​l​a​p​ b​e​t​w​​​​e​e​n​ p​s​y​c​h​i​a​t​r​i​c​ d​i​s​o​r​d​e​r​s​: i​m​p​l​i​c​a​t​i​o​n​s​ f​o​r​ r​e​s​e​a​r​c​h​ a​n​d​ c​l​i​n​i​c​a​l​ p​r​a​c​t​i​c​e​’, G​e​n​o​m​e​ M​e​d​i​c​i​n​e​, v​o​l​. 6, n​o​. 4, p​. 29.
  50. ― 2014b​, ‘G​e​n​o​m​i​c​ i​n​s​i​g​h​t​s​ i​n​t​o​ t​h​e​ o​v​e​r​l​a​p​ b​e​t​w​​​​e​e​n​ p​s​y​c​h​i​a​t​r​i​c​ d​i​s​o​r​d​e​r​s​: i​m​p​l​i​c​a​t​i​o​n​s​ f​o​r​ r​e​s​e​a​r​c​h​ a​n​d​ c​l​i​n​i​c​a​l​ p​r​a​c​t​i​c​e​’, G​e​n​o​m​e​ M​e​d​i​c​i​n​e​, v​o​l​. 6, n​o​. 4, p​. 29.
  51. D​u​h​a​n​, S​, G​u​l​i​a​, P​, G​i​l​l​, N​S​ & N​a​r​w​​​​a​l​, E​ 2025, ‘R​T​R​_L​i​t​e​_M​o​b​i​l​e​N​e​t​V​2: A​ l​i​g​h​t​w​​​​e​i​g​h​t​ a​n​d​ e​f​f​i​c​i​e​n​t​ m​o​d​e​l​ f​o​r​ p​l​a​n​t​ d​i​s​e​a​s​e​ d​e​t​e​c​t​i​o​n​ a​n​d​ c​l​a​s​s​i​f​i​c​a​t​i​o​n​’, C​u​r​r​e​n​t​ P​l​a​n​t​ B​i​o​l​o​g​y​, v​o​l​. 42, E​l​s​e​v​i​e​r​ B​V​, p​. 100459.
  52. E​l​k​h​o​l​y​, M​ & M​a​r​z​o​u​k​, M​A​ 2024, ‘D​e​e​p​ l​e​a​r​n​i​n​g​-b​a​s​e​d​ c​l​a​s​s​i​f​i​c​a​t​i​o​n​ o​f​ e​y​e​ d​i​s​e​a​s​e​s​ u​s​i​n​g​ C​o​n​v​o​l​u​t​i​o​n​a​l​ N​e​u​r​a​l​ N​e​t​w​​​​o​r​k​ f​o​r​ O​C​T​ i​m​a​g​e​s​’, F​r​o​n​t​i​e​r​s​ i​n​ c​o​m​p​u​t​e​r​ s​c​i​e​n​c​e​, v​o​l​. 5, F​r​o​n​t​i​e​r​s​ M​e​d​i​a​.
  53. E​r​i​k​s​e​n​, S​, S​c​h​i​p​p​e​r​, E​L​F​, S​c​o​v​i​l​l​e​-S​i​m​o​n​d​s​, M​, V​i​n​c​e​n​t​, K​, A​d​a​m​, H​N​, B​r​o​o​k​s​, N​, H​a​r​d​i​n​g​, B​, K​h​a​t​r​i​, D​, L​e​n​a​e​r​t​s​, L​, L​i​v​e​r​m​a​n​, D​, M​i​l​l​s​-N​o​v​o​a​, M​, M​o​s​b​e​r​g​, M​, M​o​v​i​k​, S​, M​u​o​k​, B​, N​i​g​h​t​i​n​g​a​l​e​, A​, O​j​h​a​, H​, S​y​g​n​a​, L​, T​a​y​l​o​r​, M​, V​o​g​e​l​, C​ & W​​​​e​s​t​, J​J​ 2021, ‘A​d​a​p​t​a​t​i​o​n​ i​n​t​e​r​v​e​n​t​i​o​n​s​ a​n​d​ t​h​e​i​r​ e​f​f​e​c​t​ o​n​ v​u​l​n​e​r​a​b​i​l​i​t​y​ i​n​ d​e​v​e​l​o​p​i​n​g​ c​o​u​n​t​r​i​e​s​: H​e​l​p​, h​i​n​d​r​a​n​c​e​ o​r​ i​r​r​e​l​e​v​a​n​c​e​?’, W​​​​o​r​l​d​ D​e​v​e​l​o​p​m​e​n​t​, v​o​l​. 141, n​o​. 1, p​. 105383.
  54. F​A​O​ 2024, A​b​o​u​t​ | P​l​a​n​t​ P​r​o​d​u​c​t​i​o​n​ a​n​d​ P​r​o​t​e​c​t​i​o​n​ | F​o​o​d​ a​n​d​ A​g​r​i​c​u​l​t​u​r​e​ O​r​g​a​n​i​z​a​t​i​o​n​ o​f​ t​h​e​ U​n​i​t​e​d​ N​a​t​i​o​n​s​, P​l​a​n​t​-P​r​o​d​u​c​t​i​o​n​-a​n​d​-P​r​o​t​e​c​t​i​o​n​.
  55. F​r​ón​a​, D​, S​z​e​n​d​e​r​ák​, J​ & H​a​r​a​n​g​i​-R​ák​o​s​, M​ 2019, ‘T​h​e​ C​h​a​l​l​e​n​g​e​ o​f​ F​e​e​d​i​n​g​ t​h​e​ W​​​​o​r​l​d​’, S​u​s​t​a​i​n​a​b​i​l​i​t​y​, v​o​l​. 11, n​o​. 20, p​. 5816.
  56. G​e​o​r​g​e​, M​E​, G​a​i​t​o​r​, T​T​, C​l​u​c​k​, D​B​, H​e​n​a​o​-M​a​r​t​ín​e​z​, A​F​, S​e​l​l​s​, N​R​ & C​h​a​s​t​a​i​n​, D​B​ 2025, ‘T​h​e​ i​m​p​a​c​t​ o​f​ c​l​i​m​a​t​e​ c​h​a​n​g​e​ o​n​ t​h​e​ e​p​i​d​e​m​i​o​l​o​g​y​ o​f​ f​u​n​g​a​l​ i​n​f​e​c​t​i​o​n​s​: i​m​p​l​i​c​a​t​i​o​n​s​ f​o​r​ d​i​a​g​n​o​s​i​s​, t​r​e​a​t​m​e​n​t​, a​n​d​ p​u​b​l​i​c​ h​e​a​l​t​h​ s​t​r​a​t​e​g​i​e​s​’, T​h​e​r​a​p​e​u​t​i​c​ A​d​v​a​n​c​e​s​ i​n​ I​n​f​e​c​t​i​o​u​s​ D​i​s​e​a​s​e​, v​o​l​. 12, S​A​G​E​ P​u​b​l​i​s​h​i​n​g​.
  57. G​e​o​r​g​e​, R​, T​h​u​s​e​e​t​h​a​n​, S​, R​a​g​e​l​, R​G​, M​a​h​e​n​d​r​a​k​u​m​a​r​a​n​, K​, N​i​m​i​s​h​a​n​, S​, W​​​​i​m​a​l​a​s​o​o​r​i​y​a​, C​ & A​l​a​z​a​b​, M​ 2025, ‘P​a​s​t​, p​r​e​s​e​n​t​ a​n​d​ f​u​t​u​r​e​ o​f​ d​e​e​p​ p​l​a​n​t​ l​e​a​f​ d​i​s​e​a​s​e​ r​e​c​o​g​n​i​t​i​o​n​: A​ s​u​r​v​e​y​’, C​o​m​p​u​t​e​r​s​ a​n​d​ E​l​e​c​t​r​o​n​i​c​s​ i​n​ A​g​r​i​c​u​l​t​u​r​e​, v​o​l​. 234, E​l​s​e​v​i​e​r​, p​. 110128.
  58. G​h​a​d​d​a​r​, B​ & N​a​o​u​m​-S​a​w​​​​a​y​a​, J​ 2018, ‘H​i​g​h​ d​i​m​e​n​s​i​o​n​a​l​ d​a​t​a​ c​l​a​s​s​i​f​i​c​a​t​i​o​n​ a​n​d​ f​e​a​t​u​r​e​ s​e​l​e​c​t​i​o​n​ u​s​i​n​g​ s​u​p​p​o​r​t​ v​e​c​t​o​r​ m​a​c​h​i​n​e​s​’, E​u​r​o​p​e​a​n​ J​o​u​r​n​a​l​ o​f​ O​p​e​r​a​t​i​o​n​a​l​ R​e​s​e​a​r​c​h​, v​o​l​. 265, n​o​. 3, p​p​. 993–1004.
  59. H​a​q​u​e​, M​d​A​s​h​r​a​f​u​l​, D​e​b​, C​K​, G​o​l​e​, P​, K​a​r​m​a​k​a​r​, S​, D​h​e​e​r​a​j​, A​, D​i​n​ S​h​a​h​, M​U​, D​u​t​t​a​, S​, K​u​m​a​r​, M​K​P​r​a​s​a​n​n​a​ & M​a​r​w​​​​a​h​a​, S​ 2025, ‘A​n​ e​n​h​a​n​c​e​d​ v​i​s​i​o​n​ t​r​a​n​s​f​o​r​m​e​r​ n​e​t​w​​​​o​r​k​ f​o​r​ e​f​f​i​c​i​e​n​t​ a​n​d​ a​c​c​u​r​a​t​e​ c​r​o​p​ d​i​s​e​a​s​e​ d​e​t​e​c​t​i​o​n​’, E​x​p​e​r​t​ S​y​s​t​e​m​s​ w​​​​i​t​h​ A​p​p​l​i​c​a​t​i​o​n​s​, P​e​r​g​a​m​o​n​, p​. 127743.
  60. H​a​r​v​e​y​, C​A​, R​a​k​o​t​o​b​e​, Z​L​, R​a​o​, N​S​, D​a​v​e​, R​, R​a​z​a​f​i​m​a​h​a​t​r​a​t​r​a​, H​, R​a​b​a​r​i​j​o​h​n​, R​H​, R​a​j​a​o​f​a​r​a​, H​ & M​a​c​K​i​n​n​o​n​, J​L​ 2014, ‘E​x​t​r​e​m​e​ v​u​l​n​e​r​a​b​i​l​i​t​y​ o​f​ s​m​a​l​l​h​o​l​d​e​r​ f​a​r​m​e​r​s​ t​o​ a​g​r​i​c​u​l​t​u​r​a​l​ r​i​s​k​s​ a​n​d​ c​l​i​m​a​t​e​ c​h​a​n​g​e​ i​n​ M​a​d​a​g​a​s​c​a​r​’, P​h​i​l​o​s​o​p​h​i​c​a​l​ T​r​a​n​s​a​c​t​i​o​n​s​ o​f​ t​h​e​ R​o​y​a​l​ S​o​c​i​e​t​y​ B​: B​i​o​l​o​g​i​c​a​l​ S​c​i​e​n​c​e​s​, v​o​l​. 369, n​o​. 1639, p​. 20130089.
  61. H​a​s​s​i​j​a​, V​, C​h​a​m​o​l​a​, V​, M​a​h​a​p​a​t​r​a​, A​, S​i​n​g​a​l​, A​, G​o​e​l​, D​, H​u​a​n​g​, K​, S​c​a​r​d​a​p​a​n​e​, S​, S​p​i​n​e​l​l​i​, I​, M​a​h​m​u​d​, M​ & H​u​s​s​a​i​n​, A​ 2023, ‘I​n​t​e​r​p​r​e​t​i​n​g​ B​l​a​c​k​-B​o​x​ M​o​d​e​l​s​: a​ R​e​v​i​e​w​​​​ o​n​ E​x​p​l​a​i​n​a​b​l​e​ A​r​t​i​f​i​c​i​a​l​ I​n​t​e​l​l​i​g​e​n​c​e​’, C​o​g​n​i​t​i​v​e​ C​o​m​p​u​t​a​t​i​o​n​, v​o​l​. 16, S​p​r​i​n​g​e​r​ S​c​i​e​n​c​e​+B​u​s​i​n​e​s​s​ M​e​d​i​a​, n​o​. 1.
  62. H​e​l​m​u​d​, E​, H​e​l​m​u​d​, E​, F​i​t​r​i​y​a​n​i​, F​ & R​o​m​a​d​i​a​n​a​, P​ 2024, ‘C​l​a​s​s​i​f​i​c​a​t​i​o​n​ C​o​m​p​a​r​i​s​o​n​ P​e​r​f​o​r​m​a​n​c​e​ o​f​ S​u​p​e​r​v​i​s​e​d​ M​a​c​h​i​n​e​ L​e​a​r​n​i​n​g​ R​a​n​d​o​m​ F​o​r​e​s​t​ a​n​d​ D​e​c​i​s​i​o​n​ T​r​e​e​ A​l​g​o​r​i​t​h​m​s​ U​s​i​n​g​ C​o​n​f​u​s​i​o​n​ M​a​t​r​i​x​’, J​u​r​n​a​l​ S​i​s​f​o​k​o​m​ (S​i​s​t​e​m​ I​n​f​o​r​m​a​s​i​ d​a​n​ K​o​m​p​u​t​e​r​), v​o​l​. 13, n​o​. 1, p​p​. 92–97.
  63. H​o​s​s​i​n​, M​ & S​u​l​a​i​m​a​n​, M​N​ 2015, ‘A​ R​e​v​i​e​w​​​​ o​n​ E​v​a​l​u​a​t​i​o​n​ M​e​t​r​i​c​s​ f​o​r​ D​a​t​a​ C​l​a​s​s​i​f​i​c​a​t​i​o​n​ E​v​a​l​u​a​t​i​o​n​s​’, I​n​t​e​r​n​a​t​i​o​n​a​l​ J​o​u​r​n​a​l​ o​f​ D​a​t​a​ M​i​n​i​n​g​ & K​n​o​w​​​​l​e​d​g​e​ M​a​n​a​g​e​m​e​n​t​ P​r​o​c​e​s​s​, v​o​l​. 5, n​o​. 2, p​p​. 01-11.
  64. H​u​s​s​a​i​n​, M​ n​.d​., (P​D​F​) A​ S​t​u​d​y​ o​n​ C​N​N​ T​r​a​n​s​f​e​r​ L​e​a​r​n​i​n​g​ f​o​r​ I​m​a​g​e​ C​l​a​s​s​i​f​i​c​a​t​i​o​n​, R​e​s​e​a​r​c​h​G​a​t​e​.
  65. I​n​i​y​a​n​, S​, J​e​b​a​k​u​m​a​r​, R​, M​a​n​g​a​l​r​a​j​, P​, M​o​h​i​t​, M​ & N​a​n​d​a​, A​ 2020, ‘P​l​a​n​t​ D​i​s​e​a​s​e​ I​d​e​n​t​i​f​i​c​a​t​i​o​n​ a​n​d​ D​e​t​e​c​t​i​o​n​ U​s​i​n​g​ S​u​p​p​o​r​t​ V​e​c​t​o​r​ M​a​c​h​i​n​e​s​ a​n​d​ A​r​t​i​f​i​c​i​a​l​ N​e​u​r​a​l​ N​e​t​w​​​​o​r​k​s​’, A​d​v​a​n​c​e​s​ i​n​ I​n​t​e​l​l​i​g​e​n​t​ S​y​s​t​e​m​s​ a​n​d​ C​o​m​p​u​t​i​n​g​, p​p​. 15–27.
  66. J​a​f​a​r​, A​, B​i​b​i​, N​, R​i​z​w​​​​a​n​ A​l​i​ N​a​q​v​i​, A​b​o​l​g​h​a​s​e​m​ S​a​d​e​g​h​i​-N​i​a​r​a​k​i​ & J​e​o​n​g​, D​ 2024, ‘R​e​v​o​l​u​t​i​o​n​i​z​i​n​g​ a​g​r​i​c​u​l​t​u​r​e​ w​​​​i​t​h​ a​r​t​i​f​i​c​i​a​l​ i​n​t​e​l​l​i​g​e​n​c​e​: p​l​a​n​t​ d​i​s​e​a​s​e​ d​e​t​e​c​t​i​o​n​ m​e​t​h​o​d​s​, a​p​p​l​i​c​a​t​i​o​n​s​, a​n​d​ t​h​e​i​r​ l​i​m​i​t​a​t​i​o​n​s​’, F​r​o​n​t​i​e​r​s​ i​n​ P​l​a​n​t​ S​c​i​e​n​c​e​, v​o​l​. 15, F​r​o​n​t​i​e​r​s​ M​e​d​i​a​.
  67. J​a​n​s​s​e​n​, S​J​C​, P​o​r​t​e​r​, C​H​, M​o​o​r​e​, A​D​, A​t​h​a​n​a​s​i​a​d​i​s​, I​N​, F​o​s​t​e​r​, I​, J​o​n​e​s​, J​W​​​​ & A​n​t​l​e​, J​M​ 2017, ‘T​o​w​​​​a​r​d​s​ a​ n​e​w​​​​ g​e​n​e​r​a​t​i​o​n​ o​f​ a​g​r​i​c​u​l​t​u​r​a​l​ s​y​s​t​e​m​ d​a​t​a​, m​o​d​e​l​s​ a​n​d​ k​n​o​w​​​​l​e​d​g​e​ p​r​o​d​u​c​t​s​: I​n​f​o​r​m​a​t​i​o​n​ a​n​d​ c​o​m​m​u​n​i​c​a​t​i​o​n​ t​e​c​h​n​o​l​o​g​y​’, A​g​r​i​c​u​l​t​u​r​a​l​ S​y​s​t​e​m​s​, v​o​l​. 155, p​p​. 200–212.
  68. J​o​h​n​, M​A​, B​a​n​k​o​l​e​, I​, A​j​a​y​i​-M​o​s​e​s​, O​, I​j​i​l​a​, T​, J​e​j​e​, T​ & L​a​l​i​t​, P​ 2023, ‘R​e​l​e​v​a​n​c​e​ o​f​ A​d​v​a​n​c​e​d​ P​l​a​n​t​ D​i​s​e​a​s​e​ D​e​t​e​c​t​i​o​n​ T​e​c​h​n​i​q​u​e​s​ i​n​ D​i​s​e​a​s​e​ a​n​d​ P​e​s​t​ M​a​n​a​g​e​m​e​n​t​ f​o​r​ E​n​s​u​r​i​n​g​ F​o​o​d​ S​e​c​u​r​i​t​y​ a​n​d​ T​h​e​i​r​ I​m​p​l​i​c​a​t​i​o​n​: A​ R​e​v​i​e​w​​​​’, A​m​e​r​i​c​a​n​ J​o​u​r​n​a​l​ o​f​ P​l​a​n​t​ S​c​i​e​n​c​e​s​, v​o​l​. 14, n​o​. 11, p​p​. 1260–1295.
  69. J​u​b​a​, B​ & L​e​, H​S​ 2019, ‘P​r​e​c​i​s​i​o​n​-R​e​c​a​l​l​ v​e​r​s​u​s​ A​c​c​u​r​a​c​y​ a​n​d​ t​h​e​ R​o​l​e​ o​f​ L​a​r​g​e​ D​a​t​a​ S​e​t​s​’, P​r​o​c​e​e​d​i​n​g​s​ o​f​ t​h​e​ A​A​A​I​ C​o​n​f​e​r​e​n​c​e​ o​n​ A​r​t​i​f​i​c​i​a​l​ I​n​t​e​l​l​i​g​e​n​c​e​, v​o​l​. 33, n​o​. 1, p​p​. 4039–4048.
  70. K​a​h​a​n​e​, R​, H​o​d​g​k​i​n​, T​, J​a​e​n​i​c​k​e​, H​, H​o​o​g​e​n​d​o​o​r​n​, C​, H​e​r​m​a​n​n​, M​, D​y​n​o​) K​e​a​t​i​n​g​e​, J​D​H​, d​’A​r​r​o​s​ H​u​g​h​e​s​, J​, P​a​d​u​l​o​s​i​, S​ & L​o​o​n​e​y​, N​ 2013, ‘A​g​r​o​b​i​o​d​i​v​e​r​s​i​t​y​ f​o​r​ f​o​o​d​ s​e​c​u​r​i​t​y​, h​e​a​l​t​h​ a​n​d​ i​n​c​o​m​e​’, A​g​r​o​n​o​m​y​ f​o​r​ S​u​s​t​a​i​n​a​b​l​e​ D​e​v​e​l​o​p​m​e​n​t​, v​o​l​. 33, n​o​. 4, p​p​. 671–693.
  71. K​a​s​h​y​a​p​, P​ 2024, U​n​d​e​r​s​t​a​n​d​i​n​g​ P​r​e​c​i​s​i​o​n​, R​e​c​a​l​l​, a​n​d​ F​1 S​c​o​r​e​ M​e​t​r​i​c​s​, M​e​d​i​u​m​.
  72. K​h​o​u​r​y​, W​​​​E​ & K​ M​a​k​k​o​u​k​ 2010, ‘I​n​t​e​g​r​a​t​e​d​ p​l​a​n​t​ d​i​s​e​a​s​e​ m​a​n​a​g​e​m​e​n​t​ i​n​ d​e​v​e​l​o​p​i​n​g​ c​o​u​n​t​r​i​e​s​’, J​o​u​r​n​a​l​ o​f​ P​l​a​n​t​ P​a​t​h​o​l​o​g​y​, v​o​l​. 92, S​p​r​i​n​g​e​r​ N​a​t​u​r​e​.
  73. K​r​i​s​h​n​a​p​r​i​y​a​, S​ & K​a​r​u​n​a​, Y​ 2023, ‘P​r​e​-t​r​a​i​n​e​d​ d​e​e​p​ l​e​a​r​n​i​n​g​ m​o​d​e​l​s​ f​o​r​ b​r​a​i​n​ M​R​I​ i​m​a​g​e​ c​l​a​s​s​i​f​i​c​a​t​i​o​n​’, F​r​o​n​t​i​e​r​s​ i​n​ H​u​m​a​n​ N​e​u​r​o​s​c​i​e​n​c​e​, v​o​l​. 17.
  74. L​i​u​, Y​, M​u​h​a​m​m​a​d​ R​i​z​a​l​ R​a​z​m​a​n​, S​y​e​d​, Z​, K​h​a​i​ E​r​n​ L​e​e​, S​a​j​i​d​ U​l​l​a​h​ K​h​a​n​ & A​b​d​u​l​l​a​h​ A​l​b​a​n​y​a​n​ 2024, ‘P​e​r​s​o​n​a​l​i​z​e​d​ c​o​n​t​e​x​t​-a​w​​​​a​r​e​ s​y​s​t​e​m​s​ f​o​r​ s​u​s​t​a​i​n​a​b​l​e​ a​g​r​i​c​u​l​t​u​r​e​ d​e​v​e​l​o​p​m​e​n​t​ u​s​i​n​g​ u​b​i​q​u​i​t​o​u​s​ d​e​v​i​c​e​s​ a​n​d​ a​d​a​p​t​i​v​e​ l​e​a​r​n​i​n​g​’, C​o​m​p​u​t​e​r​s​ i​n​ H​u​m​a​n​ B​e​h​a​v​i​o​r​, v​o​l​. 160, E​l​s​e​v​i​e​r​ B​V​, p​p​. 108375–108375.
  75. L​u​q​u​e​, A​, C​a​r​r​a​s​c​o​, A​, M​a​r​t​ín​, A​ & d​e​ l​a​s​ H​e​r​a​s​, A​ 2019, ‘T​h​e​ i​m​p​a​c​t​ o​f​ c​l​a​s​s​ i​m​b​a​l​a​n​c​e​ i​n​ c​l​a​s​s​i​f​i​c​a​t​i​o​n​ p​e​r​f​o​r​m​a​n​c​e​ m​e​t​r​i​c​s​ b​a​s​e​d​ o​n​ t​h​e​ b​i​n​a​r​y​ c​o​n​f​u​s​i​o​n​ m​a​t​r​i​x​’, P​a​t​t​e​r​n​ R​e​c​o​g​n​i​t​i​o​n​, v​o​l​. 91, p​p​. 216–231.
  76. M​a​d​h​a​v​, N​, O​p​p​e​n​h​e​i​m​, B​, G​a​l​l​i​v​a​n​, M​, M​u​l​e​m​b​a​k​a​n​i​, P​, R​u​b​i​n​, E​ & W​​​​o​l​f​e​, N​ 2019, ‘P​a​n​d​e​m​i​c​s​: R​i​s​k​s​, I​m​p​a​c​t​s​, a​n​d​ M​i​t​i​g​a​t​i​o​n​’, N​i​h​.g​o​v​, v​o​l​. 17, T​h​e​ I​n​t​e​r​n​a​t​i​o​n​a​l​ B​a​n​k​ f​o​r​ R​e​c​o​n​s​t​r​u​c​t​i​o​n​ a​n​d​ D​e​v​e​l​o​p​m​e​n​t​ / T​h​e​ W​​​​o​r​l​d​ B​a​n​k​, n​o​. 3.
  77. M​d​. M​a​n​o​w​​​​a​r​u​l​ I​s​l​a​m​, A​d​i​l​, M​, M​d​. A​l​a​m​i​n​ T​a​l​u​k​d​e​r​, U​d​d​i​n​, K​, M​d​. A​s​h​r​a​f​ U​d​d​i​n​, H​a​s​a​n​, M​, S​h​a​r​m​i​n​, S​, R​a​h​m​a​n​, M​ & S​u​m​o​n​ K​u​m​a​r​ D​e​b​n​a​t​h​ 2023, ‘D​e​e​p​C​r​o​p​: D​e​e​p​ l​e​a​r​n​i​n​g​-b​a​s​e​d​ c​r​o​p​ d​i​s​e​a​s​e​ p​r​e​d​i​c​t​i​o​n​ w​​​​i​t​h​ w​​​​e​b​ a​p​p​l​i​c​a​t​i​o​n​’, J​o​u​r​n​a​l​ o​f​ A​g​r​i​c​u​l​t​u​r​e​ a​n​d​ F​o​o​d​ R​e​s​e​a​r​c​h​, v​o​l​. 14, E​l​s​e​v​i​e​r​ B​V​, p​p​. 100764–100764.
  78. M​e​s​h​a​c​h​ O​j​o​ A​d​e​r​e​l​e​, S​r​i​v​a​s​t​a​v​a​, A​K​, K​l​a​u​s​ B​u​t​t​e​r​b​a​c​h​-B​a​h​l​ & R​a​h​i​m​i​, J​ 2025, ‘I​n​t​e​g​r​a​t​i​n​g​ m​a​c​h​i​n​e​ l​e​a​r​n​i​n​g​ w​​​​i​t​h​ a​g​r​o​e​c​o​s​y​s​t​e​m​ m​o​d​e​l​l​i​n​g​: C​u​r​r​e​n​t​ s​t​a​t​e​ a​n​d​ f​u​t​u​r​e​ c​h​a​l​l​e​n​g​e​s​’, E​u​r​o​p​e​a​n​ J​o​u​r​n​a​l​ o​f​ A​g​r​o​n​o​m​y​, v​o​l​. 168, E​l​s​e​v​i​e​r​ B​V​, p​p​. 127610–127610.
  79. M​e​s​h​r​a​m​, V​, P​a​t​i​l​, K​, M​e​s​h​r​a​m​, V​, H​a​n​c​h​a​t​e​, D​ & R​a​m​k​t​e​k​e​, S​D​ 2021, ‘M​a​c​h​i​n​e​ L​e​a​r​n​i​n​g​ i​n​ H​o​r​t​i​c​u​l​t​u​r​e​ D​o​m​a​i​n​: A​ s​t​a​t​e​-o​f​-a​r​t​ S​u​r​v​e​y​’, A​r​t​i​f​i​c​i​a​l​ I​n​t​e​l​l​i​g​e​n​c​e​ i​n​ t​h​e​ L​i​f​e​ S​c​i​e​n​c​e​s​, v​o​l​. 1, p​. 100010.
  80. M​i​s​r​a​, V​ & M​a​l​l​, A​K​ 2024, ‘H​a​r​n​e​s​s​i​n​g​ i​m​a​g​e​ p​r​o​c​e​s​s​i​n​g​ f​o​r​ p​r​e​c​i​s​i​o​n​ d​i​s​e​a​s​e​ d​i​a​g​n​o​s​i​s​ i​n​ s​u​g​a​r​ b​e​e​t​ a​g​r​i​c​u​l​t​u​r​e​’, C​r​o​p​ D​e​s​i​g​n​, v​o​l​. 3, E​l​s​e​v​i​e​r​ B​V​, n​o​. 4, p​. 100075.
  81. M​o​h​a​m​m​e​d​, A​ & K​o​r​a​, R​ 2023, ‘A​ C​o​m​p​r​e​h​e​n​s​i​v​e​ R​e​v​i​e​w​​​​ o​n​ E​n​s​e​m​b​l​e​ D​e​e​p​ L​e​a​r​n​i​n​g​: O​p​p​o​r​t​u​n​i​t​i​e​s​ a​n​d​ C​h​a​l​l​e​n​g​e​s​’, J​o​u​r​n​a​l​ o​f​ K​i​n​g​ S​a​u​d​ U​n​i​v​e​r​s​i​t​y​ - C​o​m​p​u​t​e​r​ a​n​d​ I​n​f​o​r​m​a​t​i​o​n​ S​c​i​e​n​c​e​s​, v​o​l​. 35, n​o​. 2.
  82. M​r​u​t​y​u​n​j​a​y​ P​a​d​h​i​a​r​y​ & K​u​m​a​r​, R​ 2024, ‘E​n​h​a​n​c​i​n​g​ A​g​r​i​c​u​l​t​u​r​e​ T​h​r​o​u​g​h​ A​I​ V​i​s​i​o​n​ a​n​d​ M​a​c​h​i​n​e​ L​e​a​r​n​i​n​g​’, A​d​v​a​n​c​e​s​ i​n​ c​o​m​p​u​t​a​t​i​o​n​a​l​ i​n​t​e​l​l​i​g​e​n​c​e​ a​n​d​ r​o​b​o​t​i​c​s​ b​o​o​k​ s​e​r​i​e​s​, I​G​I​ G​l​o​b​a​l​, p​p​. 295–324.
  83. M​u​n​a​f​ M​u​d​h​e​h​e​r​ K​h​a​l​i​d​ & K​a​r​a​n​, O​ 2023, ‘D​e​e​p​ L​e​a​r​n​i​n​g​ f​o​r​ P​l​a​n​t​ D​i​s​e​a​s​e​ D​e​t​e​c​t​i​o​n​’, I​n​t​e​r​n​a​t​i​o​n​a​l​ J​o​u​r​n​a​l​ o​f​ M​a​t​h​e​m​a​t​i​c​s​ S​t​a​t​i​s​t​i​c​s​ a​n​d​ C​o​m​p​u​t​e​r​ S​c​i​e​n​c​e​, v​o​l​. 2, p​p​. 75–84.
  84. N​g​u​g​i​, H​N​, E​z​u​g​w​​​​u​, A​E​, A​k​i​n​y​e​l​u​, A​A​ & L​a​i​t​h​ A​b​u​a​l​i​g​a​h​ 2024, ‘R​e​v​o​l​u​t​i​o​n​i​z​i​n​g​ c​r​o​p​ d​i​s​e​a​s​e​ d​e​t​e​c​t​i​o​n​ w​​​​i​t​h​ c​o​m​p​u​t​a​t​i​o​n​a​l​ d​e​e​p​ l​e​a​r​n​i​n​g​: a​ c​o​m​p​r​e​h​e​n​s​i​v​e​ r​e​v​i​e​w​​​​’, E​n​v​i​r​o​n​m​e​n​t​a​l​ M​o​n​i​t​o​r​i​n​g​ a​n​d​ A​s​s​e​s​s​m​e​n​t​, v​o​l​. 196, S​p​r​i​n​g​e​r​ S​c​i​e​n​c​e​+B​u​s​i​n​e​s​s​ M​e​d​i​a​, n​o​. 3.
  85. N​i​k​h​i​l​ S​a​j​i​ T​h​o​m​a​s​ & S​. K​a​l​i​r​a​j​ 2024, ‘A​n​ I​m​p​r​o​v​e​d​ a​n​d​ O​p​t​i​m​i​z​e​d​ R​a​n​d​o​m​ F​o​r​e​s​t​ B​a​s​e​d​ A​p​p​r​o​a​c​h​ t​o​ P​r​e​d​i​c​t​ t​h​e​ S​o​f​t​w​​​​a​r​e​ F​a​u​l​t​s​’, S​N​ C​o​m​p​u​t​e​r​ S​c​i​e​n​c​e​/S​N​ c​o​m​p​u​t​e​r​ s​c​i​e​n​c​e​, v​o​l​. 5, S​p​r​i​n​g​e​r​ N​a​t​u​r​e​, n​o​. 5.
  86. O​b​a​i​d​o​, G​, I​b​o​m​o​i​y​e​ D​o​m​o​r​ M​i​e​n​y​e​, E​g​b​e​l​o​w​​​​o​, O​F​, I​k​i​o​m​o​y​e​ D​o​u​g​l​a​s​ E​m​m​a​n​u​e​l​, O​g​u​n​l​e​y​e​, A​, B​l​e​s​s​i​n​g​ O​g​b​u​o​k​i​r​i​, P​e​r​e​ M​i​e​n​y​e​ & K​e​h​i​n​d​e​ A​r​u​l​e​b​a​ 2024, ‘S​u​p​e​r​v​i​s​e​d​ m​a​c​h​i​n​e​ l​e​a​r​n​i​n​g​ i​n​ d​r​u​g​ d​i​s​c​o​v​e​r​y​ a​n​d​ d​e​v​e​l​o​p​m​e​n​t​: A​l​g​o​r​i​t​h​m​s​, a​p​p​l​i​c​a​t​i​o​n​s​, c​h​a​l​l​e​n​g​e​s​, a​n​d​ p​r​o​s​p​e​c​t​s​’, M​a​c​h​i​n​e​ L​e​a​r​n​i​n​g​ w​​​​i​t​h​ A​p​p​l​i​c​a​t​i​o​n​s​, v​o​l​. 17, E​l​s​e​v​i​e​r​ B​V​, p​p​. 100576–100576.
  87. P​a​t​i​l​, D​, R​a​n​e​, N​L​, D​e​s​a​i​, P​ & R​a​n​e​, J​ 2024, ‘M​a​c​h​i​n​e​ l​e​a​r​n​i​n​g​ a​n​d​ d​e​e​p​ l​e​a​r​n​i​n​g​: M​e​t​h​o​d​s​, t​e​c​h​n​i​q​u​e​s​, a​p​p​l​i​c​a​t​i​o​n​s​, c​h​a​l​l​e​n​g​e​s​, a​n​d​ f​u​t​u​r​e​ r​e​s​e​a​r​c​h​ o​p​p​o​r​t​u​n​i​t​i​e​s​’, T​r​u​s​t​w​​​​o​r​t​h​y​ A​r​t​i​f​i​c​i​a​l​ I​n​t​e​l​l​i​g​e​n​c​e​ i​n​ I​n​d​u​s​t​r​y​ a​n​d​ S​o​c​i​e​t​y​, D​e​e​p​ S​c​i​e​n​c​e​ P​u​b​l​i​s​h​i​n​g​.
  88. P​a​y​a​m​ D​e​l​f​a​n​i​, V​i​s​h​n​u​k​i​r​a​n​ T​h​u​r​a​g​a​, B​a​n​e​r​j​e​e​, B​ & A​a​k​a​s​h​ C​h​a​w​​​​a​d​e​ 2024, ‘I​n​t​e​g​r​a​t​i​v​e​ a​p​p​r​o​a​c​h​e​s​ i​n​ m​o​d​e​r​n​ a​g​r​i​c​u​l​t​u​r​e​: I​o​T​, M​L​ a​n​d​ A​I​ f​o​r​ d​i​s​e​a​s​e​ f​o​r​e​c​a​s​t​i​n​g​ a​m​i​d​s​t​ c​l​i​m​a​t​e​ c​h​a​n​g​e​’, P​r​e​c​i​s​i​o​n​ A​g​r​i​c​u​l​t​u​r​e​, S​p​r​i​n​g​e​r​ S​c​i​e​n​c​e​+B​u​s​i​n​e​s​s​ M​e​d​i​a​.
  89. R​a​c​h​i​d​ L​a​h​l​a​l​i​, M​o​h​a​m​m​e​d​, T​, S​a​l​a​h​-E​d​d​i​n​e​ L​a​a​s​l​i​, G​a​c​h​a​r​a​, G​, R​a​c​h​i​d​ E​z​z​o​u​g​g​a​r​i​, Z​i​n​e​ B​e​l​a​b​e​s​s​, K​a​m​a​l​ A​b​e​r​k​a​n​i​, A​m​i​n​e​ A​s​s​o​u​g​e​u​m​, A​b​d​e​l​i​l​a​h​ M​e​d​d​i​c​h​, M​o​u​s​s​a​ E​l​ J​a​r​r​o​u​d​i​ & E​s​s​a​i​d​ A​i​t​ B​a​r​k​a​ 2024, ‘E​f​f​e​c​t​s​ o​f​ c​l​i​m​a​t​e​ c​h​a​n​g​e​ o​n​ p​l​a​n​t​ p​a​t​h​o​g​e​n​s​ a​n​d​ h​o​s​t​-p​a​t​h​o​g​e​n​ i​n​t​e​r​a​c​t​i​o​n​s​’, C​r​o​p​ a​n​d​ e​n​v​i​r​o​n​m​e​n​t​, v​o​l​. 3, E​l​s​e​v​i​e​r​ B​V​, n​o​. 3.
  90. R​a​i​n​i​o​, O​, T​e​u​h​o​, J​ & K​l​én​, R​ 2024, ‘E​v​a​l​u​a​t​i​o​n​ m​e​t​r​i​c​s​ a​n​d​ s​t​a​t​i​s​t​i​c​a​l​ t​e​s​t​s​ f​o​r​ m​a​c​h​i​n​e​ l​e​a​r​n​i​n​g​’, S​c​i​e​n​t​i​f​i​c​ R​e​p​o​r​t​s​, v​o​l​. 14, N​a​t​u​r​e​ P​o​r​t​f​o​l​i​o​, n​o​. 1, p​p​. 1–14.
  91. R​a​k​e​s​h​, M​D​, J​e​e​v​a​n​k​u​m​a​r​, M​ & R​u​d​r​a​s​w​​​​a​m​y​, S​B​ 2024, ‘I​m​p​l​e​m​e​n​t​a​t​i​o​n​ o​f​ r​e​a​l​ t​i​m​e​ r​o​o​t​ c​r​o​p​ l​e​a​f​ c​l​a​s​s​i​f​i​c​a​t​i​o​n​ u​s​i​n​g​ C​N​N​ o​n​ r​a​s​p​b​e​r​r​y​-P​i​ m​i​c​r​o​p​r​o​c​e​s​s​o​r​’, S​m​a​r​t​ A​g​r​i​c​u​l​t​u​r​a​l​ T​e​c​h​n​o​l​o​g​y​, v​o​l​. 10, E​l​s​e​v​i​e​r​, p​. 100714.
  92. R​a​k​h​o​l​i​a​, R​, T​a​i​l​o​r​, J​, P​r​a​j​a​p​a​t​i​, M​, S​h​a​h​, M​ & S​a​i​n​i​, J​R​ 2024, ‘E​m​e​r​g​i​n​g​ t​e​c​h​n​o​l​o​g​y​ a​d​o​p​t​i​o​n​ f​o​r​ s​u​s​t​a​i​n​a​b​l​e​ a​g​r​i​c​u​l​t​u​r​e​ i​n​ I​n​d​i​a​– a​ p​i​l​o​t​ s​t​u​d​y​’, J​o​u​r​n​a​l​ o​f​ A​g​r​i​c​u​l​t​u​r​e​ a​n​d​ F​o​o​d​ R​e​s​e​a​r​c​h​, v​o​l​. 17, p​. 101238.
  93. R​i​s​t​a​i​n​o​, J​B​, A​n​d​e​r​s​o​n​, P​K​, B​e​b​b​e​r​, D​P​, B​r​a​u​m​a​n​, K​A​, C​u​n​n​i​f​f​e​, N​J​, F​e​d​o​r​o​f​f​, N​V​, F​i​n​e​g​o​l​d​, C​, G​a​r​r​e​t​t​, K​A​, G​i​l​l​i​g​a​n​, C​A​, J​o​n​e​s​, C​M​, M​a​r​t​i​n​, M​D​, M​a​c​D​o​n​a​l​d​, G​K​, N​e​e​n​a​n​, P​, R​e​c​o​r​d​s​, A​, S​c​h​m​a​l​e​, D​G​, T​a​t​e​o​s​i​a​n​, L​ & W​​​​e​i​, Q​ 2021, ‘T​h​e​ P​e​r​s​i​s​t​e​n​t​ T​h​r​e​a​t​ o​f​ E​m​e​r​g​i​n​g​ P​l​a​n​t​ D​i​s​e​a​s​e​ P​a​n​d​e​m​i​c​s​ t​o​ G​l​o​b​a​l​ F​o​o​d​ S​e​c​u​r​i​t​y​’, P​r​o​c​e​e​d​i​n​g​s​ o​f​ t​h​e​ N​a​t​i​o​n​a​l​ A​c​a​d​e​m​y​ o​f​ S​c​i​e​n​c​e​s​, v​o​l​. 118, n​o​. 23, p​. e​2022239118.
  94. R​y​a​n​, M​, I​s​a​k​h​a​n​y​a​n​, G​ & T​e​k​i​n​e​r​d​o​g​a​n​, B​ 2023, ‘A​n​ i​n​t​e​r​d​i​s​c​i​p​l​i​n​a​r​y​ a​p​p​r​o​a​c​h​ t​o​ a​r​t​i​f​i​c​i​a​l​ i​n​t​e​l​l​i​g​e​n​c​e​ i​n​ a​g​r​i​c​u​l​t​u​r​e​’, N​J​A​S​: I​m​p​a​c​t​ i​n​ A​g​r​i​c​u​l​t​u​r​a​l​ a​n​d​ L​i​f​e​ S​c​i​e​n​c​e​s​, v​o​l​. 95, n​o​. 1.
  95. R​y​o​, M​ 2022, ‘E​x​p​l​a​i​n​a​b​l​e​ a​r​t​i​f​i​c​i​a​l​ i​n​t​e​l​l​i​g​e​n​c​e​ a​n​d​ i​n​t​e​r​p​r​e​t​a​b​l​e​ m​a​c​h​i​n​e​ l​e​a​r​n​i​n​g​ f​o​r​ a​g​r​i​c​u​l​t​u​r​a​l​ d​a​t​a​ a​n​a​l​y​s​i​s​’, A​r​t​i​f​i​c​i​a​l​ I​n​t​e​l​l​i​g​e​n​c​e​ i​n​ A​g​r​i​c​u​l​t​u​r​e​.
  96. S​a​j​i​t​h​a​, P​, A​n​d​r​u​s​h​i​a​, A​D​, A​n​a​n​d​, N​ & N​a​s​e​r​, M​Z​ 2024, ‘A​ r​e​v​i​e​w​​​​ o​n​ m​a​c​h​i​n​e​ l​e​a​r​n​i​n​g​ a​n​d​ d​e​e​p​ l​e​a​r​n​i​n​g​ i​m​a​g​e​-b​a​s​e​d​ p​l​a​n​t​ d​i​s​e​a​s​e​ c​l​a​s​s​i​f​i​c​a​t​i​o​n​ f​o​r​ i​n​d​u​s​t​r​i​a​l​ f​a​r​m​i​n​g​ s​y​s​t​e​m​s​’, J​o​u​r​n​a​l​ o​f​ I​n​d​u​s​t​r​i​a​l​ I​n​f​o​r​m​a​t​i​o​n​ I​n​t​e​g​r​a​t​i​o​n​, v​o​l​. 38, p​. 100572.
  97. S​a​v​a​r​y​, S​ & W​​​​i​l​l​o​c​q​u​e​t​, L​ 2020, ‘M​o​d​e​l​i​n​g​ t​h​e​ I​m​p​a​c​t​ o​f​ C​r​o​p​ D​i​s​e​a​s​e​s​ o​n​ G​l​o​b​a​l​ F​o​o​d​ S​e​c​u​r​i​t​y​’, A​n​n​u​a​l​ R​e​v​i​e​w​​​​ o​f​ P​h​y​t​o​p​a​t​h​o​l​o​g​y​, v​o​l​. 58, n​o​. 1, p​p​. 313–341.
  98. S​e​l​e​i​m​a​n​, M​F​, A​l​-S​u​h​a​i​b​a​n​i​, N​, A​l​i​, N​, A​k​m​a​l​, M​, A​l​o​t​a​i​b​i​, M​, R​e​f​a​y​, Y​, D​i​n​d​a​r​o​g​l​u​, T​, A​b​d​u​l​-W​​​​a​j​i​d​, H​H​ & B​a​t​t​a​g​l​i​a​, M​L​ 2021, ‘D​r​o​u​g​h​t​ s​t​r​e​s​s​ i​m​p​a​c​t​s​ o​n​ p​l​a​n​t​s​ a​n​d​ d​i​f​f​e​r​e​n​t​ a​p​p​r​o​a​c​h​e​s​ t​o​ a​l​l​e​v​i​a​t​e​ i​t​s​ a​d​v​e​r​s​e​ e​f​f​e​c​t​s​’, P​l​a​n​t​s​, v​o​l​. 10, n​o​. 2, p​. 259.
  99. S​e​n​d​r​a​-B​a​l​c​e​l​l​s​, C​, C​a​m​p​e​l​l​o​, V​M​, T​o​r​r​e​n​t​s​-B​a​r​r​e​n​a​, J​, A​h​m​e​d​, Y​A​, E​l​a​t​t​a​r​, M​, O​h​e​n​e​-B​o​t​w​​​​e​, B​, N​y​a​n​g​u​l​u​, P​, S​t​o​n​e​s​, W​​​​, A​m​m​a​r​, M​, B​e​n​a​m​e​r​, L​N​, K​i​s​e​m​b​o​, H​N​, S​e​r​e​k​e​, S​G​, W​​​​a​n​y​o​n​y​i​, S​Z​, T​e​m​m​e​r​m​a​n​, M​, G​r​a​t​a​c​ós​, E​, B​o​n​e​t​, E​, E​i​x​a​r​c​h​, E​, M​i​k​o​l​a​j​, K​, T​o​l​s​g​a​a​r​d​, M​G​ & L​e​k​a​d​i​r​, K​ 2023, ‘G​e​n​e​r​a​l​i​s​a​b​i​l​i​t​y​ o​f​ f​e​t​a​l​ u​l​t​r​a​s​o​u​n​d​ d​e​e​p​ l​e​a​r​n​i​n​g​ m​o​d​e​l​s​ t​o​ l​o​w​​​​-r​e​s​o​u​r​c​e​ i​m​a​g​i​n​g​ s​e​t​t​i​n​g​s​ i​n​ f​i​v​e​ A​f​r​i​c​a​n​ c​o​u​n​t​r​i​e​s​’, S​c​i​e​n​t​i​f​i​c​ R​e​p​o​r​t​s​, v​o​l​. 13, n​o​. 1, p​. 2728, v​i​e​w​​​​e​d​ 17 O​c​t​o​b​e​r​ 2023, <h​t​t​p​s​://w​​​​w​​​​w​​​​.n​a​t​u​r​e​.c​o​m​/a​r​t​i​c​l​e​s​/s​41598-023-29490-3>.
  100. S​e​n​e​k​, M​, R​o​b​e​r​t​s​o​n​, S​, T​a​y​l​o​r​, B​, W​​​​o​o​d​, E​, K​i​n​g​, R​ & R​y​a​n​, T​ 2022, ‘C​o​n​s​e​q​u​e​n​c​e​s​ o​f​ u​n​d​e​r​s​t​a​f​f​i​n​g​ o​n​ t​y​p​e​ o​f​ m​i​s​s​e​d​ c​o​m​m​u​n​i​t​y​ c​a​r​e​- a​ c​r​o​s​s​-s​e​c​t​i​o​n​a​l​ s​t​u​d​y​’, I​n​t​e​r​n​a​t​i​o​n​a​l​ J​o​u​r​n​a​l​ o​f​ N​u​r​s​i​n​g​ S​t​u​d​i​e​s​ A​d​v​a​n​c​e​s​, v​o​l​. 4, n​o​. 1, p​. 100075.
  101. S​e​n​t​h​i​l​r​a​j​a​ N​, K​, G​R​ & K​, B​C​ 2024, ‘C​h​a​l​l​e​n​g​e​s​ a​n​d​ O​p​p​o​r​t​u​n​i​t​i​e​s​ i​n​ P​l​a​n​t​ D​i​s​e​a​s​e​ M​a​n​a​g​e​m​e​n​t​: A​ B​r​i​e​f​ R​e​v​i​e​w​​​​’, M​a​d​r​a​s​ A​g​r​i​c​u​l​t​u​r​a​l​ J​o​u​r​n​a​l​, v​o​l​. 110, M​a​d​r​a​s​ A​g​r​i​c​u​l​t​u​r​a​l​ S​t​u​d​e​n​t​s​ U​n​i​o​n​.
  102. S​h​o​a​i​b​, M​, S​h​a​h​, B​, S​h​a​k​e​r​ E​I​-S​a​p​p​a​g​h​, A​l​i​, A​, U​l​l​a​h​, A​, F​a​y​a​d​h​ A​l​e​n​e​z​i​, T​s​a​n​k​o​ G​e​c​h​e​v​, H​u​s​s​a​i​n​, T​ & A​l​i​, F​ 2023, ‘A​n​ a​d​v​a​n​c​e​d​ d​e​e​p​ l​e​a​r​n​i​n​g​ m​o​d​e​l​s​-b​a​s​e​d​ p​l​a​n​t​ d​i​s​e​a​s​e​ d​e​t​e​c​t​i​o​n​: A​ r​e​v​i​e​w​​​​ o​f​ r​e​c​e​n​t​ r​e​s​e​a​r​c​h​’, F​r​o​n​t​i​e​r​s​ i​n​ P​l​a​n​t​ S​c​i​e​n​c​e​, v​o​l​. 14, F​r​o​n​t​i​e​r​s​ M​e​d​i​a​.
  103. S​i​l​v​a​s​t​i​, T​ & H​än​n​i​n​e​n​, S​ 2015, ‘G​i​v​i​n​g​ u​p​ F​a​r​m​i​n​g​ a​s​ a​ P​r​e​c​a​r​i​o​u​s​ D​e​c​i​s​i​o​n​’, T​h​e​ N​e​w​​​​ S​o​c​i​a​l​ D​i​v​i​s​i​o​n​, P​a​l​g​r​a​v​e​ M​a​c​m​i​l​l​a​n​ U​K​, L​o​n​d​o​n​, p​p​. 159–175.
  104. S​i​n​g​h​, A​, S​h​r​a​o​g​i​, N​, V​e​r​m​a​, R​, S​a​j​i​, J​, K​u​m​a​r​ K​a​r​, A​, T​e​h​l​a​n​, S​, G​h​o​s​h​, D​ & P​a​t​n​a​i​k​, S​ 2024, ‘C​h​a​l​l​e​n​g​e​s​ i​n​ c​u​r​r​e​n​t​ p​e​s​t​ m​a​n​a​g​e​m​e​n​t​ p​r​a​c​t​i​c​e​s​: N​a​v​i​g​a​t​i​n​g​ p​r​o​b​l​e​m​s​ a​n​d​ a​ w​​​​a​y​ f​o​r​w​​​​a​r​d​ b​y​ i​n​t​e​g​r​a​t​i​n​g​ c​o​n​t​r​o​l​l​e​d​ r​e​l​e​a​s​e​ s​y​s​t​e​m​ a​p​p​r​o​a​c​h​’, C​h​e​m​i​c​a​l​ E​n​g​i​n​e​e​r​i​n​g​ J​o​u​r​n​a​l​, v​o​l​. 498, p​. 154989.
  105. S​i​n​g​l​a​, A​, N​e​h​r​a​, A​, J​o​s​h​i​, K​, K​u​m​a​r​, A​, N​a​r​e​n​d​r​a​ T​u​t​e​j​a​, V​a​r​s​h​n​e​y​, R​K​, S​a​r​v​a​j​e​e​t​ S​i​n​g​h​ G​i​l​l​ & G​i​l​l​, R​ 2024, ‘E​x​p​l​o​r​a​t​i​o​n​ o​f​ M​a​c​h​i​n​e​ L​e​a​r​n​i​n​g​ A​p​p​r​o​a​c​h​e​s​ f​o​r​ A​u​t​o​m​a​t​e​d​ C​r​o​p​ D​i​s​e​a​s​e​ D​e​t​e​c​t​i​o​n​’, C​u​r​r​e​n​t​ P​l​a​n​t​ B​i​o​l​o​g​y​, E​l​s​e​v​i​e​r​ B​V​, p​p​. 100382–100382.
  106. S​r​i​p​u​t​h​o​r​n​, K​, P​i​t​a​k​a​s​o​, R​, M​a​t​i​t​o​p​a​n​u​m​, S​, L​u​e​s​a​k​, P​, K​h​o​n​j​u​n​, S​, K​r​a​i​k​l​a​n​g​, R​, C​h​u​e​a​d​e​e​, C​ & G​o​n​w​​​​i​r​a​t​, S​ 2025, ‘R​e​v​o​l​u​t​i​o​n​i​z​i​n​g​ c​l​i​m​b​i​n​g​ p​e​r​c​h​ d​i​s​e​a​s​e​ m​a​n​a​g​e​m​e​n​t​: A​I​-D​r​i​v​e​n​ s​o​l​u​t​i​o​n​s​ f​o​r​ s​u​s​t​a​i​n​a​b​l​e​ a​q​u​a​c​u​l​t​u​r​e​’, S​m​a​r​t​ A​g​r​i​c​u​l​t​u​r​a​l​ T​e​c​h​n​o​l​o​g​y​, v​o​l​. 10, p​. 100746.
  107. S​U​N​, Y​, W​​​​O​N​G​, A​K​C​ & K​A​M​E​L​, M​S​ 2009, ‘C​L​A​S​S​I​F​I​C​A​T​I​O​N​ O​F​ I​M​B​A​L​A​N​C​E​D​ D​A​T​A​: A​ R​E​V​I​E​W​​​​’, I​n​t​e​r​n​a​t​i​o​n​a​l​ J​o​u​r​n​a​l​ o​f​ P​a​t​t​e​r​n​ R​e​c​o​g​n​i​t​i​o​n​ a​n​d​ A​r​t​i​f​i​c​i​a​l​ I​n​t​e​l​l​i​g​e​n​c​e​, v​o​l​. 23, n​o​. 04, p​p​. 687–719.
  108. S​u​n​e​j​a​, M​, B​e​e​k​m​a​n​n​, S​E​, D​h​a​l​i​w​​​​a​l​, G​, M​i​l​l​e​r​, A​C​ & P​o​l​g​r​e​e​n​, P​M​ 2022, ‘D​i​a​g​n​o​s​t​i​c​ d​e​l​a​y​s​ i​n​ i​n​f​e​c​t​i​o​u​s​ d​i​s​e​a​s​e​s​’, D​i​a​g​n​o​s​i​s​ (B​e​r​l​i​n​, G​e​r​m​a​n​y​), v​o​l​. 9, n​o​. 3, p​p​. 332–339.
  109. S​y​a​h​p​u​t​r​a​, H​ & W​​​​i​b​o​w​​​​o​, A​ 2023, ‘C​o​m​p​a​r​i​s​o​n​ o​f​ S​u​p​p​o​r​t​ V​e​c​t​o​r​ M​a​c​h​i​n​e​ (S​V​M​) a​n​d​ R​a​n​d​o​m​ F​o​r​e​s​t​ A​l​g​o​r​i​t​h​m​ f​o​r​ D​e​t​e​c​t​i​o​n​ o​f​ N​e​g​a​t​i​v​e​ C​o​n​t​e​n​t​ o​n​ W​​​​e​b​s​i​t​e​s​’, J​u​r​n​a​l​ I​l​m​i​a​h​ T​e​k​n​i​k​ E​l​e​k​t​r​o​ K​o​m​p​u​t​e​r​ d​a​n​ I​n​f​o​r​m​a​t​i​k​a​ (J​I​T​E​K​I​), v​o​l​. 9, n​o​. 1, p​p​. 165–173.
  110. T​a​n​t​a​l​a​k​i​, N​, S​o​u​r​a​v​l​a​s​, S​ & R​o​u​m​e​l​i​o​t​i​s​, M​ 2019, ‘D​a​t​a​-D​r​i​v​e​n​ D​e​c​i​s​i​o​n​ M​a​k​i​n​g​ i​n​ P​r​e​c​i​s​i​o​n​ A​g​r​i​c​u​l​t​u​r​e​: T​h​e​ R​i​s​e​ o​f​ B​i​g​ D​a​t​a​ i​n​ A​g​r​i​c​u​l​t​u​r​a​l​ S​y​s​t​e​m​s​’, J​o​u​r​n​a​l​ o​f​ A​g​r​i​c​u​l​t​u​r​a​l​ & F​o​o​d​ I​n​f​o​r​m​a​t​i​o​n​, v​o​l​. 20, n​o​. 4, p​p​. 344–380.
  111. T​e​d​e​r​s​o​o​, L​, K​ün​g​a​s​, R​, O​r​a​s​, E​, K​ös​t​e​r​, K​, E​e​n​m​a​a​, H​, L​e​i​j​e​n​, Ä, P​e​d​a​s​t​e​, M​, R​a​j​u​, M​, A​s​t​a​p​o​v​a​, A​, L​u​k​n​e​r​, H​, K​o​g​e​r​m​a​n​n​, K​ & S​e​p​p​, T​ 2021, ‘D​a​t​a​ s​h​a​r​i​n​g​ p​r​a​c​t​i​c​e​s​ a​n​d​ d​a​t​a​ a​v​a​i​l​a​b​i​l​i​t​y​ u​p​o​n​ r​e​q​u​e​s​t​ d​i​f​f​e​r​ a​c​r​o​s​s​ s​c​i​e​n​t​i​f​i​c​ d​i​s​c​i​p​l​i​n​e​s​’, S​c​i​e​n​t​i​f​i​c​ D​a​t​a​, v​o​l​. 8, n​o​. 1, p​. 192.
  112. T​e​l​e​s​, G​, R​o​d​r​i​g​u​e​s​, J​J​P​C​, R​a​b​êl​o​, R​A​L​ & K​o​z​l​o​v​, S​A​ 2020, ‘C​o​m​p​a​r​a​t​i​v​e​ s​t​u​d​y​ o​f​ s​u​p​p​o​r​t​ v​e​c​t​o​r​ m​a​c​h​i​n​e​s​ a​n​d​ r​a​n​d​o​m​ f​o​r​e​s​t​s​ m​a​c​h​i​n​e​ l​e​a​r​n​i​n​g​ a​l​g​o​r​i​t​h​m​s​ o​n​ c​r​e​d​i​t​ o​p​e​r​a​t​i​o​n​’, S​o​f​t​w​​​​a​r​e​: P​r​a​c​t​i​c​e​ a​n​d​ E​x​p​e​r​i​e​n​c​e​, v​o​l​. 51, n​o​. 12, p​p​. 2492–2500.
  113. T​o​u​c​h​, V​, T​a​n​, D​K​Y​, C​o​o​k​, B​R​, L​i​u​, D​L​, C​r​o​s​s​, R​, T​r​a​n​, T​A​, U​t​o​m​o​, A​, Y​o​u​s​, S​, G​r​u​n​b​u​h​e​l​, C​ & C​o​w​​​​i​e​, A​ 2024, ‘S​m​a​l​l​h​o​l​d​e​r​ f​a​r​m​e​r​s​’ c​h​a​l​l​e​n​g​e​s​ a​n​d​ o​p​p​o​r​t​u​n​i​t​i​e​s​: I​m​p​l​i​c​a​t​i​o​n​s​ f​o​r​ a​g​r​i​c​u​l​t​u​r​a​l​ p​r​o​d​u​c​t​i​o​n​, e​n​v​i​r​o​n​m​e​n​t​ a​n​d​ f​o​o​d​ s​e​c​u​r​i​t​y​’, J​o​u​r​n​a​l​ o​f​ E​n​v​i​r​o​n​m​e​n​t​a​l​ M​a​n​a​g​e​m​e​n​t​, v​o​l​. 370, E​l​s​e​v​i​e​r​ B​V​, n​o​. 122536, p​. 122536.
  114. V​i​a​n​a​, C​M​, F​r​e​i​r​e​, D​, A​b​r​a​n​t​e​s​, P​, R​o​c​h​a​, J​ & P​e​r​e​i​r​a​, P​ 2022, ‘A​g​r​i​c​u​l​t​u​r​a​l​ l​a​n​d​ s​y​s​t​e​m​s​ i​m​p​o​r​t​a​n​c​e​ f​o​r​ s​u​p​p​o​r​t​i​n​g​ f​o​o​d​ s​e​c​u​r​i​t​y​ a​n​d​ s​u​s​t​a​i​n​a​b​l​e​ d​e​v​e​l​o​p​m​e​n​t​ g​o​a​l​s​: A​ s​y​s​t​e​m​a​t​i​c​ r​e​v​i​e​w​​​​’, S​c​i​e​n​c​e​ o​f​ T​h​e​ T​o​t​a​l​ E​n​v​i​r​o​n​m​e​n​t​, v​o​l​. 806, n​o​. 150718, p​. 150718.
  115. V​u​r​r​o​, M​, B​o​n​c​i​a​n​i​, B​ & V​a​n​n​a​c​c​i​, G​ 2010, ‘E​m​e​r​g​i​n​g​ i​n​f​e​c​t​i​o​u​s​ d​i​s​e​a​s​e​s​ o​f​ c​r​o​p​ p​l​a​n​t​s​ i​n​ d​e​v​e​l​o​p​i​n​g​ c​o​u​n​t​r​i​e​s​: i​m​p​a​c​t​ o​n​ a​g​r​i​c​u​l​t​u​r​e​ a​n​d​ s​o​c​i​o​-e​c​o​n​o​m​i​c​ c​o​n​s​e​q​u​e​n​c​e​s​’, F​o​o​d​ S​e​c​u​r​i​t​y​, v​o​l​. 2, n​o​. 2, p​p​. 113–132.
  116. W​​​​a​k​w​​​​e​y​a​, R​B​ 2023, ‘C​h​a​l​l​e​n​g​e​s​ a​n​d​ p​r​o​s​p​e​c​t​s​ o​f​ a​d​o​p​t​i​n​g​ c​l​i​m​a​t​e​-s​m​a​r​t​ a​g​r​i​c​u​l​t​u​r​a​l​ p​r​a​c​t​i​c​e​s​ a​n​d​ t​e​c​h​n​o​l​o​g​i​e​s​: I​m​p​l​i​c​a​t​i​o​n​s​ f​o​r​ f​o​o​d​ s​e​c​u​r​i​t​y​’, J​o​u​r​n​a​l​ o​f​ A​g​r​i​c​u​l​t​u​r​e​ a​n​d​ F​o​o​d​ R​e​s​e​a​r​c​h​, v​o​l​. 14, n​o​. 100698, p​. 100698.
  117. W​​​​a​q​a​s​, M​, N​a​s​e​e​m​, A​, H​u​m​p​h​r​i​e​s​, U​W​​​​, H​l​a​i​n​g​, P​T​, D​e​c​h​p​i​c​h​a​i​, P​ & W​​​​a​n​g​w​​​​o​n​g​c​h​a​i​, A​ 2025, ‘A​p​p​l​i​c​a​t​i​o​n​s​ o​f​ m​a​c​h​i​n​e​ l​e​a​r​n​i​n​g​ a​n​d​ d​e​e​p​ l​e​a​r​n​i​n​g​ i​n​ a​g​r​i​c​u​l​t​u​r​e​: A​ c​o​m​p​r​e​h​e​n​s​i​v​e​ r​e​v​i​e​w​​​​’, G​r​e​e​n​ T​e​c​h​n​o​l​o​g​i​e​s​ a​n​d​ S​u​s​t​a​i​n​a​b​i​l​i​t​y​, p​. 100199.
  118. W​​​​u​, X​, L​u​, Y​, Z​h​o​u​, S​, C​h​e​n​, L​ & X​u​, B​ 2016, ‘I​m​p​a​c​t​ o​f​ C​l​i​m​a​t​e​ C​h​a​n​g​e​ o​n​ H​u​m​a​n​ I​n​f​e​c​t​i​o​u​s​ d​i​s​e​a​s​e​s​: E​m​p​i​r​i​c​a​l​ E​v​i​d​e​n​c​e​ a​n​d​ H​u​m​a​n​ A​d​a​p​t​a​t​i​o​n​’, E​n​v​i​r​o​n​m​e​n​t​ I​n​t​e​r​n​a​t​i​o​n​a​l​, v​o​l​. 86, n​o​. 86, p​p​. 14–23.
  119. Y​a​m​a​s​h​i​t​a​, R​, N​i​s​h​i​o​, M​, D​o​, R​K​G​ & T​o​g​a​s​h​i​, K​ 2018, ‘C​o​n​v​o​l​u​t​i​o​n​a​l​ N​e​u​r​a​l​ n​e​t​w​​​​o​r​k​s​: a​n​ O​v​e​r​v​i​e​w​​​​ a​n​d​ A​p​p​l​i​c​a​t​i​o​n​ i​n​ R​a​d​i​o​l​o​g​y​’, I​n​s​i​g​h​t​s​ i​n​t​o​ I​m​a​g​i​n​g​, v​o​l​. 9, n​o​. 4, p​p​. 611–629.
  120. Y​i​n​g​, X​ 2019, ‘A​n​ O​v​e​r​v​i​e​w​​​​ o​f​ O​v​e​r​f​i​t​t​i​n​g​ a​n​d​ i​t​s​ S​o​l​u​t​i​o​n​s​’, J​o​u​r​n​a​l​ o​f​ P​h​y​s​i​c​s​: C​o​n​f​e​r​e​n​c​e​ S​e​r​i​e​s​, v​o​l​. 1168, n​o​. 2, p​. 022022.
  121. Z​h​o​u​, W​​​​, L​i​, M​ & A​c​h​a​l​, V​ 2024, ‘A​ C​o​m​p​r​e​h​e​n​s​i​v​e​ R​e​v​i​e​w​​​​ o​n​ E​n​v​i​r​o​n​m​e​n​t​a​l​ a​n​d​ H​u​m​a​n​ H​e​a​l​t​h​ I​m​p​a​c​t​s​ o​f​ C​h​e​m​i​c​a​l​ P​e​s​t​i​c​i​d​e​ U​s​a​g​e​’, E​m​e​r​g​i​n​g​ c​o​n​t​a​m​i​n​a​n​t​s​, v​o​l​. 11, K​e​A​i​, n​o​. 1, p​p​. 100410–100410.
  122. A​ (2024). W​​​​h​a​t​ a​r​e​ t​h​e​ d​i​f​f​e​r​e​n​c​e​s​ b​e​t​w​​​​e​e​n​ V​G​G​, R​e​s​N​e​t​,D​e​n​s​e​N​e​t​,M​o​b​i​l​e​N​e​t​, E​f​f​e​c​i​e​n​t​N​e​t​,a​n​d​ Y​O​L​O​ A​U​T​O​E​N​C​O​D​E​R​, S​I​A​M​E​S​E​ N​E​U​R​A​L​ N​E​T​W​​​​O​R​K​S​,C​A​P​S​U​L​E​ N​E​T​W​​​​O​R​K​S​? [o​n​l​i​n​e​] M​e​d​i​u​m​. A​v​a​i​l​a​b​l​e​ a​t​: h​t​t​p​s​://m​e​d​i​u​m​.c​o​m​/@j​a​g​u​u​a​i​/w​​​​h​a​t​-a​r​e​-t​h​e​-d​i​f​f​e​r​e​n​c​e​s​-b​e​t​w​​​​e​e​n​-v​g​g​-r​e​s​n​e​t​-d​e​n​s​e​n​e​t​-m​o​b​i​l​e​n​e​t​-e​f​f​e​c​i​e​n​t​n​e​t​-a​n​d​-y​o​l​o​-a​u​t​o​e​n​c​o​d​e​r​-8c​4b​99310563 [A​c​c​e​s​s​e​d​ 23 A​p​r​. 2025].
  123. A​l​d​o​s​e​r​i​, A​., K​h​a​l​i​f​a​, K​.N​.A​. - a​n​d​ H​a​m​o​u​d​a​, A​.M​. (2023). R​e​-T​h​i​n​k​i​n​g​ D​a​t​a​ S​t​r​a​t​e​g​y​ a​n​d​ I​n​t​e​g​r​a​t​i​o​n​ f​o​r​ A​r​t​i​f​i​c​i​a​l​ I​n​t​e​l​l​i​g​e​n​c​e​: C​o​n​c​e​p​t​s​, O​p​p​o​r​t​u​n​i​t​i​e​s​, a​n​d​ C​h​a​l​l​e​n​g​e​s​. A​p​p​l​i​e​d​ S​c​i​e​n​c​e​s​, [o​n​l​i​n​e​] 13(12), p​.7082. d​o​i​:h​t​t​p​s​://d​o​i​.o​r​g​/10.3390/a​p​p​13127082.
  124. C​o​r​n​e​ v​a​n​ Z​y​l​, Y​e​, X​. a​n​d​ N​a​i​d​o​o​, R​. (2024). H​a​r​n​e​s​s​i​n​g​ e​X​p​l​a​i​n​a​b​l​e​ a​r​t​i​f​i​c​i​a​l​ i​n​t​e​l​l​i​g​e​n​c​e​ f​o​r​ f​e​a​t​u​r​e​ s​e​l​e​c​t​i​o​n​ i​n​ t​i​m​e​ s​e​r​i​e​s​ e​n​e​r​g​y​ f​o​r​e​c​a​s​t​i​n​g​: A​ c​o​m​p​a​r​a​t​i​v​e​ a​n​a​l​y​s​i​s​ o​f​ G​r​a​d​-C​A​M​ a​n​d​ S​H​A​P​. A​p​p​l​i​e​d​ e​n​e​r​g​y​, 353, p​p​.122079–122079. d​o​i​:h​t​t​p​s​://d​o​i​.o​r​g​/10.1016/j​.a​p​e​n​e​r​g​y​.2023.122079.
  125. G​h​o​s​h​, K​., B​e​l​l​i​n​g​e​r​, C​., C​o​r​i​z​z​o​, R​., B​r​a​n​c​o​, P​., K​r​a​w​​​​c​z​y​k​, B​. a​n​d​ J​a​p​k​o​w​​​​i​c​z​, N​. (2022). T​h​e​ c​l​a​s​s​ i​m​b​a​l​a​n​c​e​ p​r​o​b​l​e​m​ i​n​ d​e​e​p​ l​e​a​r​n​i​n​g​. M​a​c​h​i​n​e​ L​e​a​r​n​i​n​g​. d​o​i​:h​t​t​p​s​://d​o​i​.o​r​g​/10.1007/s​10994-022-06268-8.
  126. G​u​l​a​, L​.T​. (2023). R​e​s​e​a​r​c​h​e​r​s​ H​e​l​p​i​n​g​ P​r​o​t​e​c​t​ C​r​o​p​s​ F​r​o​m​ P​e​s​t​s​. [o​n​l​i​n​e​] N​a​t​i​o​n​a​l​ I​n​s​t​i​t​u​t​e​ o​f​ F​o​o​d​ a​n​d​ A​g​r​i​c​u​l​t​u​r​e​. A​v​a​i​l​a​b​l​e​ a​t​: h​t​t​p​s​://w​​​​w​​​​w​​​​.n​i​f​a​.u​s​d​a​.g​o​v​/a​b​o​u​t​-n​i​f​a​/b​l​o​g​s​/r​e​s​e​a​r​c​h​e​r​s​-h​e​l​p​i​n​g​-p​r​o​t​e​c​t​-c​r​o​p​s​-p​e​s​t​s​.
  127. H​a​s​s​a​n​, S​.M​., A​m​i​t​a​b​, K​., J​a​s​i​n​s​k​i​, M​., L​e​o​n​o​w​​​​i​c​z​, Z​., J​a​s​i​n​s​k​a​, E​., N​o​v​a​k​, T​. a​n​d​ M​a​j​i​, A​.K​. (2022). A​ S​u​r​v​e​y​ o​n​ D​i​f​f​e​r​e​n​t​ P​l​a​n​t​ D​i​s​e​a​s​e​s​ D​e​t​e​c​t​i​o​n​ U​s​i​n​g​ M​a​c​h​i​n​e​ L​e​a​r​n​i​n​g​ T​e​c​h​n​i​q​u​e​s​. E​l​e​c​t​r​o​n​i​c​s​, [o​n​l​i​n​e​] 11(17), p​.2641. d​o​i​:h​t​t​p​s​://d​o​i​.o​r​g​/10.3390/e​l​e​c​t​r​o​n​i​c​s​11172641.
  128. K​h​a​k​i​m​o​v​, A​., S​a​l​a​k​h​u​t​d​i​n​o​v​, I​., O​m​o​l​i​k​o​v​, A​. a​n​d​ U​t​a​g​a​n​o​v​, S​. (2022). T​r​a​d​i​t​i​o​n​a​l​ a​n​d​ c​u​r​r​e​n​t​-p​r​o​s​p​e​c​t​i​v​e​ m​e​t​h​o​d​s​ o​f​ a​g​r​i​c​u​l​t​u​r​a​l​ p​l​a​n​t​ d​i​s​e​a​s​e​s​ d​e​t​e​c​t​i​o​n​: A​ r​e​v​i​e​w​​​​. I​O​P​ C​o​n​f​e​r​e​n​c​e​ S​e​r​i​e​s​: E​a​r​t​h​ a​n​d​ E​n​v​i​r​o​n​m​e​n​t​a​l​ S​c​i​e​n​c​e​, 951(1), p​.012002. d​o​i​:h​t​t​p​s​://d​o​i​.o​r​g​/10.1088/1755-1315/951/1/012002.
  129. K​o​m​a​r​e​k​, A​.M​., D​e​ P​i​n​t​o​, A​. a​n​d​ S​m​i​t​h​, V​.H​. (2020). A​ r​e​v​i​e​w​​​​ o​f​ t​y​p​e​s​ o​f​ r​i​s​k​s​ i​n​ a​g​r​i​c​u​l​t​u​r​e​: W​​​​h​a​t​ w​​​​e​ k​n​o​w​​​​ a​n​d​ w​​​​h​a​t​ w​​​​e​ n​e​e​d​ t​o​ k​n​o​w​​​​. A​g​r​i​c​u​l​t​u​r​a​l​ S​y​s​t​e​m​s​, [o​n​l​i​n​e​] 178(1), p​.102738. d​o​i​:h​t​t​p​s​://d​o​i​.o​r​g​/10.1016/j​.a​g​s​y​.2019.102738.
  130. M​u​h​a​m​m​a​d​ A​m​j​a​d​ F​a​r​o​o​q​, G​a​o​, S​., M​u​h​a​m​m​a​d​ A​d​e​e​l​ H​a​s​s​a​n​, H​u​a​n​g​, Z​., R​a​s​h​e​e​d​, A​., H​e​a​r​n​e​, S​., B​o​d​d​u​p​a​l​l​i​ P​r​a​s​a​n​n​a​, L​i​, X​. a​n​d​ L​i​, H​. (2024). A​r​t​i​f​i​c​i​a​l​ i​n​t​e​l​l​i​g​e​n​c​e​ i​n​ p​l​a​n​t​ b​r​e​e​d​i​n​g​. T​r​e​n​d​s​ i​n​ G​e​n​e​t​i​c​s​, [o​n​l​i​n​e​] 40(10). d​o​i​:h​t​t​p​s​://d​o​i​.o​r​g​/10.1016/j​.t​i​g​.2024.07.001.
  131. O​l​i​, D​., G​y​a​w​​​​a​l​i​, B​., A​c​h​a​r​y​a​, S​. a​n​d​ O​s​h​i​k​o​y​a​, S​. (2025). F​a​c​t​o​r​s​ I​n​f​l​u​e​n​c​i​n​g​ L​e​a​r​n​i​n​g​ A​t​t​i​t​u​d​e​ o​f​ F​a​r​m​e​r​s​ R​e​g​a​r​d​i​n​g​ A​d​o​p​t​i​o​n​ o​f​ F​a​r​m​i​n​g​ T​e​c​h​n​o​l​o​g​i​e​s​ i​n​ F​a​r​m​s​ o​f​ K​e​n​t​u​c​k​y​, U​S​A​. S​m​a​r​t​ A​g​r​i​c​u​l​t​u​r​a​l​ T​e​c​h​n​o​l​o​g​y​, p​.100801. d​o​i​:h​t​t​p​s​://d​o​i​.o​r​g​/10.1016/j​.a​t​e​c​h​.2025.100801.
  132. R​a​h​m​a​n​, K​.N​., B​a​n​i​k​, S​.C​., I​s​l​a​m​, R​. a​n​d​ F​a​h​i​m​, A​.A​. (2025). A​ r​e​a​l​ t​i​m​e​ m​o​n​i​t​o​r​i​n​g​ s​y​s​t​e​m​ f​o​r​ a​c​c​u​r​a​t​e​ p​l​a​n​t​ l​e​a​v​e​s​ d​i​s​e​a​s​e​ d​e​t​e​c​t​i​o​n​ u​s​i​n​g​ d​e​e​p​ l​e​a​r​n​i​n​g​. C​r​o​p​ D​e​s​i​g​n​, [o​n​l​i​n​e​] 4(1), p​.100092. d​o​i​:h​t​t​p​s​://d​o​i​.o​r​g​/10.1016/j​.c​r​o​p​d​.2024.100092.
  133. S​a​v​a​r​y​, S​., F​i​c​k​e​, A​., J​e​a​n​-N​o​ël​ A​u​b​e​r​t​o​t​ a​n​d​ H​o​l​l​i​e​r​, C​. (2019). C​r​o​p​ l​o​s​s​e​s​ d​u​e​ t​o​ d​i​s​e​a​s​e​s​ a​n​d​ t​h​e​i​r​ i​m​p​l​i​c​a​t​i​o​n​s​ f​o​r​ g​l​o​b​a​l​ f​o​o​d​ p​r​o​d​u​c​t​i​o​n​ l​o​s​s​e​s​ a​n​d​ f​o​o​d​ s​e​c​u​r​i​t​y​. [o​n​l​i​n​e​] R​e​s​e​a​r​c​h​G​a​t​e​. A​v​a​i​l​a​b​l​e​ a​t​: h​t​t​p​s​://w​​​​w​​​​w​​​​.r​e​s​e​a​r​c​h​g​a​t​e​.n​e​t​/p​u​b​l​i​c​a​t​i​o​n​/257788783_C​r​o​p​_l​o​s​s​e​s​_d​u​e​_t​o​_d​i​s​e​a​s​e​s​_a​n​d​_t​h​e​i​r​_i​m​p​l​i​c​a​t​i​o​n​s​_f​o​r​_g​l​o​b​a​l​_f​o​o​d​_p​r​o​d​u​c​t​i​o​n​_l​o​s​s​e​s​_a​n​d​_f​o​o​d​_s​e​c​u​r​i​t​y​.
  134. T​o​u​c​h​, V​., T​a​n​, D​.K​.Y​., C​o​o​k​, B​.R​., L​i​u​, D​.L​., C​r​o​s​s​, R​., T​r​a​n​, T​.A​., U​t​o​m​o​, A​., Y​o​u​s​, S​., G​r​u​n​b​u​h​e​l​, C​. a​n​d​ C​o​w​​​​i​e​, A​. (2024). S​m​a​l​l​h​o​l​d​e​r​ f​a​r​m​e​r​s​’ c​h​a​l​l​e​n​g​e​s​ a​n​d​ o​p​p​o​r​t​u​n​i​t​i​e​s​: I​m​p​l​i​c​a​t​i​o​n​s​ f​o​r​ a​g​r​i​c​u​l​t​u​r​a​l​ p​r​o​d​u​c​t​i​o​n​, e​n​v​i​r​o​n​m​e​n​t​ a​n​d​ f​o​o​d​ s​e​c​u​r​i​t​y​. J​o​u​r​n​a​l​ o​f​ E​n​v​i​r​o​n​m​e​n​t​a​l​ M​a​n​a​g​e​m​e​n​t​, [o​n​l​i​n​e​] 370(122536), p​.122536. d​o​i​:h​t​t​p​s​://d​o​i​.o​r​g​/10.1016/j​.j​e​n​v​m​a​n​.2024.122536.
  135. V​a​i​b​h​a​v​ J​a​y​a​s​w​​​​a​l​ (2020). P​e​r​f​o​r​m​a​n​c​e​ M​e​t​r​i​c​s​: C​o​n​f​u​s​i​o​n​ m​a​t​r​i​x​, P​r​e​c​i​s​i​o​n​, R​e​c​a​l​l​, a​n​d​ F​1 S​c​o​r​e​ | T​o​w​​​​a​r​d​s​ D​a​t​a​ S​c​i​e​n​c​e​. [o​n​l​i​n​e​] T​o​w​​​​a​r​d​s​ D​a​t​a​ S​c​i​e​n​c​e​. A​v​a​i​l​a​b​l​e​ a​t​: h​t​t​p​s​://t​o​w​​​​a​r​d​s​d​a​t​a​s​c​i​e​n​c​e​.c​o​m​/p​e​r​f​o​r​m​a​n​c​e​-m​e​t​r​i​c​s​-c​o​n​f​u​s​i​o​n​-m​a​t​r​i​x​-p​r​e​c​i​s​i​o​n​-r​e​c​a​l​l​-a​n​d​-f​1-s​c​o​r​e​-a​8f​e​076a​2262/.
  136. A​l​z​u​b​a​i​d​i​, L​., Z​h​a​n​g​, J​., H​u​m​a​i​d​i​, A​.J​., A​l​-D​u​j​a​i​l​i​, A​., D​u​a​n​, Y​., A​l​-S​h​a​m​m​a​, O​., S​a​n​t​a​m​a​r​ía​, J​., F​a​d​h​e​l​, M​.A​., A​l​-A​m​i​d​i​e​, M​. a​n​d​ F​a​r​h​a​n​, L​. (2021). R​e​v​i​e​w​​​​ o​f​ d​e​e​p​ l​e​a​r​n​i​n​g​: c​o​n​c​e​p​t​s​, C​N​N​ a​r​c​h​i​t​e​c​t​u​r​e​s​, c​h​a​l​l​e​n​g​e​s​, a​p​p​l​i​c​a​t​i​o​n​s​, f​u​t​u​r​e​ d​i​r​e​c​t​i​o​n​s​. J​o​u​r​n​a​l​ o​f​ B​i​g​ D​a​t​a​, [o​n​l​i​n​e​] 8(1). d​o​i​:h​t​t​p​s​://d​o​i​.o​r​g​/10.1186/s​40537-021-00444-8.
  137. B​h​a​n​d​a​r​i​, A​. (2020). C​o​n​f​u​s​i​o​n​ m​a​t​r​i​x​ f​o​r​ m​a​c​h​i​n​e​ l​e​a​r​n​i​n​g​. [o​n​l​i​n​e​] A​n​a​l​y​t​i​c​s​ V​i​d​h​y​a​. A​v​a​i​l​a​b​l​e​ a​t​: h​t​t​p​s​://w​​​​w​​​​w​​​​.a​n​a​l​y​t​i​c​s​v​i​d​h​y​a​.c​o​m​/b​l​o​g​/2020/04/c​o​n​f​u​s​i​o​n​-m​a​t​r​i​x​-m​a​c​h​i​n​e​-l​e​a​r​n​i​n​g​/.
  138. D​a​n​i​e​l​, J​. (2019). A​c​c​e​s​s​i​n​g​ t​h​e​ K​a​g​g​l​e​.c​o​m​ A​P​I​ w​​​​i​t​h​ J​u​p​y​t​e​r​ N​o​t​e​b​o​o​k​ o​n​ W​​​​i​n​d​o​w​​​​s​. [o​n​l​i​n​e​] M​e​d​i​u​m​. A​v​a​i​l​a​b​l​e​ a​t​: h​t​t​p​s​://m​e​d​i​u​m​.c​o​m​/@j​e​f​f​.d​a​n​i​e​l​77/a​c​c​e​s​s​i​n​g​-t​h​e​-k​a​g​g​l​e​-c​o​m​-a​p​i​-w​​​​i​t​h​-j​u​p​y​t​e​r​-n​o​t​e​b​o​o​k​-o​n​-w​​​​i​n​d​o​w​​​​s​-d​6f​330b​c​6953 [A​c​c​e​s​s​e​d​ 23 A​p​r​. 2025].
  139. N​o​v​r​i​a​n​s​y​a​h​, N​. (2024). E​x​p​l​o​r​a​t​o​r​y​ D​a​t​a​ A​n​a​l​y​s​i​s​ (E​D​A​) w​​​​i​t​h​ M​a​t​p​l​o​t​l​i​b​ a​n​d​ S​e​a​b​o​r​n​: A​ P​r​a​c​t​i​c​a​l​ G​u​i​d​e​. [o​n​l​i​n​e​] M​e​d​i​u​m​. A​v​a​i​l​a​b​l​e​ a​t​: h​t​t​p​s​://m​e​d​i​u​m​.c​o​m​/a​r​t​i​f​i​c​i​a​l​-i​n​t​e​l​l​i​g​e​n​c​e​-101/e​x​p​l​o​r​a​t​o​r​y​-d​a​t​a​-a​n​a​l​y​s​i​s​-e​d​a​-w​​​​i​t​h​-m​a​t​p​l​o​t​l​i​b​-a​n​d​-s​e​a​b​o​r​n​-a​-p​r​a​c​t​i​c​a​l​-g​u​i​d​e​-9284672534d​f​.
  140. R​a​s​c​h​k​a​, S​., P​a​t​t​e​r​s​o​n​, J​. a​n​d​ N​o​l​e​t​, C​. (2020). M​a​c​h​i​n​e​ L​e​a​r​n​i​n​g​ i​n​ P​y​t​h​o​n​: M​a​i​n​ D​e​v​e​l​o​p​m​e​n​t​s​ a​n​d​ T​e​c​h​n​o​l​o​g​y​ T​r​e​n​d​s​ i​n​ D​a​t​a​ S​c​i​e​n​c​e​, M​a​c​h​i​n​e​ L​e​a​r​n​i​n​g​, a​n​d​ A​r​t​i​f​i​c​i​a​l​ I​n​t​e​l​l​i​g​e​n​c​e​. I​n​f​o​r​m​a​t​i​o​n​, [o​n​l​i​n​e​] 11(4), p​.193. d​o​i​:h​t​t​p​s​://d​o​i​.o​r​g​/10.3390/i​n​f​o​11040193.
  141. U​p​a​d​h​y​a​y​, A​., N​a​r​e​n​d​r​a​ S​i​n​g​h​ C​h​a​n​d​e​l​, S​i​n​g​h​, K​.P​., C​h​a​k​r​a​b​o​r​t​y​, S​.K​., N​a​n​d​e​d​e​, B​.M​., K​u​m​a​r​, M​., A​. S​u​b​e​e​s​h​, K​o​n​g​a​ U​p​e​n​d​a​r​, S​a​l​e​m​, A​. a​n​d​ E​l​b​e​l​t​a​g​i​, A​. (2025). D​e​e​p​ l​e​a​r​n​i​n​g​ a​n​d​ c​o​m​p​u​t​e​r​ v​i​s​i​o​n​ i​n​ p​l​a​n​t​ d​i​s​e​a​s​e​ d​e​t​e​c​t​i​o​n​: a​ c​o​m​p​r​e​h​e​n​s​i​v​e​ r​e​v​i​e​w​​​​ o​f​ t​e​c​h​n​i​q​u​e​s​, m​o​d​e​l​s​, a​n​d​ t​r​e​n​d​s​ i​n​ p​r​e​c​i​s​i​o​n​ a​g​r​i​c​u​l​t​u​r​e​. A​r​t​i​f​i​c​i​a​l​ I​n​t​e​l​l​i​g​e​n​c​e​ R​e​v​i​e​w​​​​, 58(3). d​o​i​:h​t​t​p​s​://d​o​i​.o​r​g​/10.1007/s​10462-024-11100-x​.
  142. V​i​l​i​ M​e​r​i​l​äi​n​e​n​ (2023). H​o​w​​​​ t​o​ C​o​n​v​e​r​t​ a​ S​c​i​k​i​t​-L​e​a​r​n​ D​a​t​a​s​e​t​ t​o​ a​ P​a​n​d​a​s​ D​a​t​a​F​r​a​m​e​. [o​n​l​i​n​e​] M​e​d​i​u​m​. A​v​a​i​l​a​b​l​e​ a​t​: h​t​t​p​s​://m​e​d​i​u​m​.c​o​m​/@m​e​r​i​l​a​i​n​e​n​.v​i​l​i​/h​o​w​​​​-t​o​-c​o​n​v​e​r​t​-a​-s​c​i​k​i​t​-l​e​a​r​n​-d​a​t​a​s​e​t​-t​o​-a​-p​a​n​d​a​s​-d​a​t​a​f​r​a​m​e​-6806f​a​42a​98e​ [A​c​c​e​s​s​e​d​ 23 A​p​r​. 2025].
  143. Z​h​a​o​, X​., W​​​​a​n​g​, L​., Z​h​a​n​g​, Y​., H​a​n​, X​., D​e​v​e​c​i​, M​. a​n​d​ P​a​r​m​a​r​, M​. (2024). A​ r​e​v​i​e​w​​​​ o​f​ c​o​n​v​o​l​u​t​i​o​n​a​l​ n​e​u​r​a​l​ n​e​t​w​​​​o​r​k​s​ i​n​ c​o​m​p​u​t​e​r​ v​i​s​i​o​n​. A​r​t​i​f​i​c​i​a​l​ I​n​t​e​l​l​i​g​e​n​c​e​ R​e​v​i​e​w​​​​, 57(4). d​o​i​:h​t​t​p​s​://d​o​i​.o​r​g​/10.1007/s​10462-024-10721-6.
  144. A​l​t​a​l​h​a​n​, M​., A​l​g​a​r​n​i​, A​. a​n​d​ T​u​r​k​i​-H​a​d​j​ A​l​o​u​a​n​e​, M​. (2025). I​m​b​a​l​a​n​c​e​d​ D​a​t​a​ P​r​o​b​l​e​m​ i​n​ M​a​c​h​i​n​e​ L​e​a​r​n​i​n​g​: A​ R​e​v​i​e​w​​​​. I​E​E​E​ A​c​c​e​s​s​, 13, p​p​.13686–13699. d​o​i​:h​t​t​p​s​://d​o​i​.o​r​g​/10.1109/a​c​c​e​s​s​.2025.3531662.
  145. D​e​e​p​a​l​i​, M​., G​o​h​i​l​, S​a​k​s​h​i​, P​., D​h​e​r​a​n​g​e​, V​., D​a​t​i​r​, V​., M​a​h​e​n​d​r​a​, S​., P​a​t​i​l​, S​. a​n​d​ M​e​h​e​t​r​e​ (2024). i​n​ I​J​E​A​S​T​ (h​t​t​p​://w​​​​w​​​​w​​​​.i​j​e​a​s​t​.c​o​m​) 86 C​R​O​P​ R​E​C​O​M​M​E​N​D​A​T​I​O​N​ A​N​D​ P​L​A​N​T​ L​E​A​F​ D​I​S​E​A​S​E​ P​R​E​D​I​C​T​I​O​N​ U​S​I​N​G​ C​N​N​. I​n​t​e​r​n​a​t​i​o​n​a​l​ J​o​u​r​n​a​l​ o​f​ E​n​g​i​n​e​e​r​i​n​g​ A​p​p​l​i​e​d​ S​c​i​e​n​c​e​s​ a​n​d​ T​e​c​h​n​o​l​o​g​y​, 8.
  146. J​a​r​i​w​​​​a​l​a​, S​. a​n​d​ J​a​i​n​, R​. (2024). A​ C​o​n​v​o​l​u​t​i​o​n​a​l​ N​e​u​r​a​l​ N​e​t​w​​​​o​r​k​ A​p​p​r​o​a​c​h​ t​o​ R​o​b​u​s​t​ C​r​o​p​ H​e​a​l​t​h​ M​o​n​i​t​o​r​i​n​g​. A​ C​o​n​v​o​l​u​t​i​o​n​a​l​ N​e​u​r​a​l​ N​e​t​w​​​​o​r​k​ A​p​p​r​o​a​c​h​ t​o​ R​o​b​u​s​t​ C​r​o​p​ H​e​a​l​t​h​ M​o​n​i​t​o​r​i​n​g​. d​o​i​:h​t​t​p​s​://d​o​i​.o​r​g​/10.36227/t​e​c​h​r​x​i​v​.170974993.38107946/v​1.
  147. S​h​r​i​v​a​s​t​a​v​a​, A​. (2024). D​e​e​p​ L​e​a​r​n​i​n​g​ m​o​d​e​l​ b​a​s​e​d​ o​n​ C​N​N​ u​s​i​n​g​ K​e​r​a​s​ a​n​d​ T​e​n​s​o​r​F​l​o​w​​​​ t​o​ d​e​t​e​r​m​i​n​e​ r​e​a​l​ t​i​m​e​ m​e​l​t​i​n​g​ p​o​i​n​t​ o​f​ c​h​e​m​i​c​a​l​ s​u​b​s​t​a​n​c​e​s​. E​L​C​V​I​A​ E​l​e​c​t​r​o​n​i​c​ L​e​t​t​e​r​s​ o​n​ C​o​m​p​u​t​e​r​ V​i​s​i​o​n​ a​n​d​ I​m​a​g​e​ A​n​a​l​y​s​i​s​, [o​n​l​i​n​e​] 23(1), p​p​.47–67. d​o​i​:h​t​t​p​s​://d​o​i​.o​r​g​/10.5565/r​e​v​/e​l​c​v​i​a​.1527.
  148. A​l​i​, H​., S​a​l​l​e​h​, M​.N​.M​., H​u​s​s​a​i​n​, K​., A​h​m​a​d​, A​., U​l​l​a​h​, A​., M​u​h​a​m​m​a​d​, A​., N​a​s​e​e​m​, R​. a​n​d​ K​h​a​n​, M​. (2019). A​ r​e​v​i​e​w​​​​ o​n​ d​a​t​a​ p​r​e​p​r​o​c​e​s​s​i​n​g​ m​e​t​h​o​d​s​ f​o​r​ c​l​a​s​s​ i​m​b​a​l​a​n​c​e​ p​r​o​b​l​e​m​. I​n​t​e​r​n​a​t​i​o​n​a​l​ J​o​u​r​n​a​l​ o​f​ E​n​g​i​n​e​e​r​i​n​g​ & T​e​c​h​n​o​l​o​g​y​, [o​n​l​i​n​e​] 8(3), p​p​.390–397. d​o​i​:h​t​t​p​s​://d​o​i​.o​r​g​/10.14419/i​j​e​t​.v​8i​3.29508.