Reference list
Abisola Akinjole, Olamilekan Shobayo, Popoola, J., Obinna Okoyeigbo and Ogunleye, B. (2024). Ensemble-Based Machine Learning Algorithm for Loan Default Risk Prediction. Mathematics, [online] 12(21), pp.3423–3423. doi:https://doi.org/10.3390/math12213423.
Achanta, M. (2024). The Impact of Real - Time Data Processing on Business Decision - making. International Journal of Science and Research (IJSR), 13(7), pp.400–404. doi:https://doi.org/10.21275/sr24708033511.
Afolabi, O. (2024). Balancing Performance and Interpretability in AI Models for Finance and Security. [online] Available at: https://www.researchgate.net/publication/387106480_Balancing_Performance_and_Interpretability_in_AI_Models_for_Finance_and_Security.
Ama, A. (2025). Developing Predictive Models for Via Loan Default Risks Using Structured and Unstructured Financial Data Across Lending Institutions. International Journal of Research Publication and Reviews, [online] 6(5), pp.14147–14162. doi:https://doi.org/10.55248/gengpi.6.0525.1952.
Association of Certified Fraud Examiners (2024). Fraud Magazine Article. [online] Acfe.com. Available at: https://www.acfe.com/fraud-magazine/all-issues/issue/article?s=2024-julyaug-ai-machine-learning-in-banking.
Financial Institutions (2024). Building Growth From Uncertainty in Financial Institutions. [online] AON. Available at: https://www.aon.com/en/insights/articles/building-growth-from-uncertainty-in-financial-institutions.
Fraudcom International (2024). Alternative data - Enhancing accuracy in fraud detection | Fraud.com. [online] Fraud.com. Available at: https://www.fraud.com/post/alternative-data.
Hammadchaudhary (2024). The Importance of Feature Engineering in a Reliable Machine Learning Pipeline. [online] Medium. Available at: https://medium.com/@hammadchaudhary168/the-importance-of-feature-engineering-in-a-reliable-machine-learning-pipeline-898a2d2aa2a4.
Kadiri, H., Oukhouya, H. and Belkhoutout, K. (2025). A comparative study of hybrid and individual models for predicting the Moroccan MASI index: Integrating machine learning and deep learning approaches. Scientific African, [online] 28, p.e02671. doi:https://doi.org/10.1016/j.sciaf.2025.e02671.
Khan, F.S., Mazhar, S.S., Mazhar, K., AlSaleh, D.A. and Mazhar, A. (2025). Model-agnostic explainable artificial intelligence methods in finance: a systematic review, recent developments, limitations, challenges and future directions. Artificial Intelligence Review, 58(8). doi:https://doi.org/10.1007/s10462-025-11215-9.
Kobayashi, K. and Syed Bahauddin Alam (2024). Explainable, interpretable, and trustworthy AI for an intelligent digital twin: A case study on remaining useful life. Engineering applications of artificial intelligence, 129, pp.107620–107620. doi:https://doi.org/10.1016/j.engappai.2023.107620.
Linardatos, P., Papastefanopoulos, V. and Kotsiantis, S. (2020). Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy, [online] 23(1), p.18. doi:https://doi.org/10.3390/e23010018.
Liu, Y., Baals, L.J., Osterrieder, J. and Hadji-Misheva, B. (2024). Leveraging network topology for credit risk assessment in P2P lending: A comparative study under the lens of machine learning. Expert Systems with Applications, [online] 252, p.124100. doi:https://doi.org/10.1016/j.eswa.2024.124100.
scikit-learn (2012). 1.11. Ensemble methods , scikit-learn 0.22.1 documentation. [online] Scikit-learn.org. Available at: https://scikit-learn.org/stable/modules/ensemble.html.
Winner Olabiyi, Samson, A. and Jew, W. (2025). Deploying Lightweight AI Models for Real-Time Diagnosis in Resource-Constrained Environments. [online] Available at: https://www.researchgate.net/publication/392337463_Deploying_Lightweight_AI_Models_for_Real-Time_Diagnosis_in_Resource-Constrained_Environments.
Addy, W. A., Ugochukwu, C. E., Oyewole, A. T., Ofodile, O. C., Adeoye, O. B., & Okoye, C. C. (2024). Predictive analytics in credit risk management for banks: A comprehensive review. GSC Advanced Research and Reviews, 18(2), 434–449. https://doi.org/10.30574/gscarr.2024.18.2.0077
Bacchetta, P., Benhima, K., & Renne, J.-P. (2022). Understanding Swiss real interest rates in a financially globalized world. Swiss Journal of Economics and Statistics, 158(1). https://doi.org/10.1186/s41937-022-00095-3
Bureau, A. N. (2024, September 2). Which Fintech Platforms Offer The Best Personal Loan Rates? Here’s The Breakdown. Abplive.com; ABPLive. https://news.abplive.com/business/personal-finance/top-fintech-platforms-personal-loans-interest-rates-2024-paytm-satya-microcapital-kreditbee-dmi-finance-upwards-by-lendingkart-groww-credit-1714471
Chang, V., Sivakulasingam, S., Wang, H., Wong, S. T., Ganatra, M. A., & Luo, J. (2024). Credit Risk Prediction Using Machine Learning and Deep Learning: A Study on Credit Card Customers. Risks, 12(11), 174. https://doi.org/10.3390/risks12110174
Godwin Olaoye Oluwafemi, Faith, R., Badmus, J., & Luz, H. (2024, September 16). Hybrid Models Combining Machine Learning and Traditional Epidemiological Models. International Journal of Circumpolar Health; Taylor & Francis. https://www.researchgate.net/publication/387723315_Hybrid_Models_Combining_Machine_Learning_and_Traditional_Epidemiological_Models
Lekan, T., Cena, J., Harry, A., & Rajab, H. (2025, November 14). Comparison of Neural Networks with Traditional Machine Learning Models (e.g., XGBoost, Random Forest). Researchgate. https://www.researchgate.net/publication/389546882_Comparison_of_Neural_Networks_with_Traditional_Machine_Learning_Models_eg_XGBoost_Random_Forest
loansjagat. (2025). India’s Fintech Revolution 2025: How Digital Lending is Changing Borrowing. Loansjagat.com. https://www.loansjagat.com/blog/india-fintech-revolution
Nwaimo, C. S., Adegbola, A. E., & Adegbola, M. D. (2024). Predictive analytics for financial inclusion: Using machine learning to improve credit access for under banked populations. Computer Science & IT Research Journal, 5(6), 1358–1373. https://doi.org/10.51594/csitrj.v5i6.1201
Onyinye Jacqueline Ezeilo, Ikponmwoba, S. O., Chima, O. K., Ojonugwa, B. M., & Adesuyi, M. O. (2022). Hybrid Machine Learning Models for Retail Sales Forecasting Across Omnichannel Platforms. Shodhshauryam International Scientific Refereed Research, 5(2), 175–190. https://www.researchgate.net/publication/392623256_Hybrid_Machine_Learning_Models_for_Retail_Sales_Forecasting_Across_Omnichannel_Platforms
Qiu, Z., Kownatzki, C., Scalzo, F., & Cha, E. S. (2025). Historical Perspectives in Volatility Forecasting Methods with Machine Learning. Risks, 13(5), 98. https://doi.org/10.3390/risks13050098
Thuy, N. T. H., Ha, N. T. V., Trung, N. N., Binh, V. T. T., Hang, N. T., & Binh, V. T. (2025). Comparing the Effectiveness of Machine Learning and Deep Learning Models in Student Credit Scoring: A Case Study in Vietnam. Risks, 13(5), 99. https://doi.org/10.3390/risks13050099
UDO, A. (2024, February 26). REGULATORY COMPLIANCE AND ACCESS TO FINANCE: IMPLICATIONS FOR BUSINESS GROWTH IN DEVELOPING ECONOMIES. ResearchGate; unknown. https://www.researchgate.net/publication/378506641_REGULATORY_COMPLIANCE_AND_ACCESS_TO_FINANCE_IMPLICATIONS_FOR_BUSINESS_GROWTH_IN_DEVELOPING_ECONOMIES